首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, low doses (0.5, 1, and 2 μM) of cobalt protoporphyrin (CoPP), but not ferric protoporphyrin (FePP) or tin protoporphyrin (SnPP), significantly inhibited lipopolysaccharide (LPS) or lipoteichoic acid (LTA)-induced inducible nitric oxide (iNOS) and nitric oxide (NO) production with an increase in heme oxygenase 1 (HO-1) protein in RAW264.7 macrophages under serum-free conditions. IC50 values of CoPP inhibition of NO and iNOS protein individually induced by LPS and LTA were around 0.25 and 1.7 μM, respectively. This suggests that CoPP is more sensitive at inhibiting NO production than iNOS protein in response to separate LPS and LTA stimulation. NO inhibition and HO-1 induction by CoPP were blocked by the separate addition of fetal bovine serum (FBS) and bovine serum albumin (BSA). Decreasing iNOS/NO production and increasing HO-1 protein by CoPP were observed with CoPP pretreatment, CoPP co-treatment, and CoPP post-treatment with LPS and LTA stimulation. LPS- and LTA-induced NOS/NO productions were significantly suppressed by the JNK inhibitor, SP600125, but not by the ERK inhibitor, PD98059, through a reduction in JNK protein phosphorylation. Transfection of a dominant negative JNK plasmid inhibited LPS- and LTA-induced iNOS/NO production and JNK protein phosphorylation, suggesting that JNK activation is involved in LPS- and LTA-induced iNOS/NO production. Additionally, CoPP inhibition of LPS- and LTA-induced JNK, but not ERK, protein phosphorylation was identified in RAW264.7 cells. Furthermore, CoPP significantly reduced NO production in a cell-mediated, but not cell-free, iNOS enzyme activity assay accompanied by HO-1 induction. However, attenuation of HO-1 protein stimulated by CoPP via transfection of HO-1 siRNA did not affect NO's inhibition of CoPP against LPS stimulation. CoPP effectively suppressing LPS- and LTA-induced iNOS/NO production through blocking JNK activation and iNOS enzyme activity via a HO-1 independent manner is first demonstrated herein.  相似文献   

2.
Oxidative stress activates various signal transduction pathways, including Jun N-terminal kinase (JNK) and its substrates, that induce apoptosis. We reported here the role of angiopoietin-1 (Ang1), which is a prosurvival factor in endothelial cells, during endothelial cell damage induced by oxidative stress. Hydrogen peroxide (H2O2) increased apoptosis of endothelial cells through JNK activation, whereas Ang1 inhibited H2O2-induced apoptosis and concomitant JNK phosphorylation. The inhibition of H2O2-induced JNK phosphorylation was reversed by inhibitors of phosphatidylinositol (PI) 3-kinase and dominant-negative Akt, and constitutively active-Akt attenuated JNK phosphorylation without Ang1. These data suggested that Ang1-dependent Akt phosphorylation through PI 3-kinase leads to the inhibition of JNK phosphorylation. H2O2-induced phosphorylation of SAPK/Erk kinase (SEK1) at Thr261, which is an upstream regulator of JNK, was also attenuated by Ang1-dependent activation of the PI 3-kinase/Akt pathway. In addition, Ang1 induced SEK1 phosphorylation at Ser80, suggesting the existence of an additional signal transduction pathway through which Ang1 attenuates JNK phosphorylation. These results demonstrated that Ang1 attenuates H2O2-induced SEK1/JNK phosphorylation through the PI 3-kinase/Akt pathway and inhibits the apoptosis of endothelial cells to oxidative stress.  相似文献   

3.
The induction of heme oxygenase 1 (HO-1) by a single treatment with cobalt protoporphyrin (CoPPIX) protects against inflammatory liver failure and ischemia reperfusion injury after allotransplantation. In this context, the HO-1-mediated inhibition of donor-derived dendritic cell maturation and migration is discussed as one of the key events of graft protection. To investigate the poorly understood mechanism of CoPPIX-induced HO-1 activity in more detail, we performed gene expression analysis in murine liver, revealing the up-regulation of STAT3 after CoPPIX treatment. By using wild-type and HO-1-deficient dendritic cells we demonstrated that LPS-induced maturation is dependent on STAT3 phosphorylation and independent of HO-1 activity. In summary, our observations revise our understanding of the anti-inflammatory properties of HO-1 and highlight the immunomodulatory capacity of STAT3, which might be of further interest for targeting undesired immune responses, including ischemia reperfusion injury.  相似文献   

4.
Heme oxygenase-1 (HO-1) overexpression protects against tissue injury in many inflammatory processes, including ischemia/reperfusion injury (IRI). This study evaluated whether genetically decreased HO-1 levels affected susceptibility to liver IRI. Partial warm ischemia was produced in hepatic lobes for 90 min followed by 6 h of reperfusion in heterozygous HO-1 knockout (HO-1(+/-)) and HO-1(+/+) wild-type (WT) mice. HO-1(+/-) mice demonstrated reduced HO-1 mRNA/protein levels at baseline and postreperfusion. This corresponded with increased hepatocellular damage in HO-1(+/-) mice, compared with WT. HO-1(+/-) mice revealed enhanced neutrophil infiltration and proinflammatory cytokine (TNF-alpha, IL-6, and IFN-gamma) induction, as well as an increase of intrahepatic apoptotic TUNEL(+) cells with enhanced expression of proapoptotic genes (Bax/cleaved caspase-3). We used cobalt protoporphyrin (CoPP) treatment to evaluate the effect of increased baseline HO-1 levels in both WT and HO-1(+/-) mice. CoPP treatment increased HO-1 expression in both animal groups, which correlated with a lower degree of hepatic damage. However, HO-1 mRNA/protein levels were still lower in HO-1(+/-) mice, which failed to achieve the degree of antioxidant hepatoprotection seen in CoPP-treated WT. Although the baseline and postreperfusion HO-1 levels correlated with the degree of protection, the HO-1 fold induction correlated instead with the degree of damage. Thus, basal HO-1 levels are more critical than the ability to up-regulate HO-1 in response to the IRI and may also predict the success of pharmacologically induced cytoprotection. This model provides an opportunity to further our understanding of HO-1 in stress defense mechanisms and design new regimens to prevent IRI.  相似文献   

5.

Background

Oxidative stress underlies the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), obesity and cardiovascular disease (CVD). Heme Oxygenase-1 (HO-1) is a potent endogenous antioxidant gene that plays a key role in decreasing oxidative stress. Sirtuin1 (SIRT1) belongs to the family of NAD-dependent de-acyetylases and is modulated by cellular redox.

Hypothesis

We hypothesize that fructose-induced obesity creates an inflammatory and oxidative environment conducive to the development of NAFLD and metabolic syndrome. The aim of this study is to determine whether HO-1 acts through SIRT1 to form a functional module within hepatocytes to attenuate steatohepatitis, hepatic fibrosis and cardiovascular dysfunction.

Methods and Results

We examined the effect of fructose, on hepatocyte lipid accumulation and fibrosis in murine hepatocytes and in mice fed a high fructose diet in the presence and absence of CoPP, an inducer of HO-1, and SnMP, an inhibitor of HO activity. Fructose increased oxidative stress markers and decreased HO-1 and SIRT1 levels in hepatocytes (p<0.05). Further fructose supplementation increased FAS, PPARα, pAMPK and triglycerides levels; CoPP negated this increase. Concurrent treatment with CoPP and SIRT1 siRNA in hepatocytes increased FAS, PPARα, pAMPK and triglycerides levels suggesting that HO-1 is upstream of SIRT1 and suppression of SIRT1 attenuates the beneficial effects of HO-1. A high fructose diet increased insulin resistance, blood pressure, markers of oxidative stress and lipogenesis along with fibrotic markers in mice (p<0.05). Increased levels of HO-1 increased SIRT1 levels and ameliorated fructose-mediated lipid accumulation and fibrosis in liver along with decreasing vascular dysfunction (p<0.05 vs. fructose). These beneficial effects of CoPP were reversed by SnMP.

Conclusion

Taken together, our study demonstrates, for the first time, that HO-1 induction attenuates fructose-induced hepatic lipid deposition, prevents the development of hepatic fibrosis and abates NAFLD-associated vascular dysfunction; effects that are mediated by activation of SIRT1 gene expression.  相似文献   

6.
Ischemia/reperfusion (I/R) injury is the main cause of primary graft dysfunction of liver allografts. Cobalt-protoporphyrin (CoPP)–dependent induction of heme oxygenase (HO)-1 has been shown to protect the liver from I/R injury. This study analyzes the apoptotic mechanisms of HO-1-mediated cytoprotection in mouse liver exposed to I/R injury. HO-1 induction was achieved by the administration of CoPP (1.5 mg/kg body weight i.p.). Mice were studied in in vivo model of hepatic segmental (70 %) ischemia for 60 min and reperfusion injury. Mice were randomly allocated to four main experimental groups (n = 10 each): (1) A control group undergoing sham operation. (2) Similar to group 1 but with the administration of CoPP 72 h before the operation. (3) Mice undergoing in vivo hepatic I/R. (4) Similar to group 3 but with the administration of CoPP 72 h before ischemia induction. When compared with the I/R mice group, in the I/R+CoPP mice group, the increased hepatic expression of HO-1 was associated with a significant reduction in liver enzyme levels, fewer apoptotic hepatocytes cells were identified by morphological criteria and by immunohistochemistry for caspase-3, there was a decreased mean number of proliferating cells (positively stained for Ki67), and a reduced hepatic expression of: C/EBP homologous protein (an index of endoplasmic reticulum stress), the NF-κB’s regulated genes (CIAP2, MCP-1 and IL-6), and increased hepatic expression of IκBa (the inhibitory protein of NF-κB). HO-1 over-expression plays a pivotal role in reducing the hepatic apoptotic IR injury. HO-1 may serve as a potential target for therapeutic intervention in hepatic I/R injury during liver transplantation.  相似文献   

7.
Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity.  相似文献   

8.
Induction of hemeoxygenase-1 (HO-1) lowers blood pressure and reduces organ damage in hypertensive animal models; however, a potential protective role for HO-1 induction against diabetic-induced glomerular injury remains unclear. We hypothesize that HO-1 induction will protect against diabetes-induced glomerular injury by maintaining glomerular integrity and inhibiting renal apoptosis, inflammation, and oxidative stress. Diabetes was induced with streptozotocin in spontaneously hypertensive rats (SHR) as a model where the coexistence of hypertension and diabetes aggravates the progression of diabetic renal injury. Control and diabetic SHR were randomized to receive vehicle or the HO-1 inducer cobalt protoporphyrin (CoPP). Glomerular albumin permeability was significantly greater in diabetic SHR compared with control, consistent with an increase in apoptosis and decreased glomerular nephrin and α(3)β(1)-integrin protein expression in diabetic SHR. CoPP significantly reduced albumin permeability and apoptosis and restored nephrin and α(3)β(1)-integrin protein expression levels in diabetic SHR. Glomerular injury in diabetic SHR was also associated with increases in NF-κB-induced inflammation and oxidative stress relative to vehicle-treated SHR, and CoPP significantly blunted diabetes-induced increases in glomerular inflammation and oxidative stress in diabetic SHR. These effects were specific to exogenous stimulation of HO-1, since incubation with the HO inhibitor stannous mesoporphyrin alone did not alter glomerular inflammatory markers or oxidative stress yet was able to prevent CoPP-mediated decreases in these parameters. These data suggest that induction of HO-1 reduces diabetic induced-glomerular injury and apoptosis and these effects are associated with decreased NF-κB-induced inflammation and oxidative stress.  相似文献   

9.
The rat nematode lungworm Angiostrongylus cantonensis undergoes obligatory intracerebral migration in its hosts and causes eosinophilic meningitis or meningoencephalitis. Heme oxygenase 1 (HO-1) has several cytoprotective properties such as anti-oxidative, anti-inflammatory, and anti-apoptotic effects. HO-1 in brain tissues was induced in A. cantonensis-infected group and showed positive modulation in cobalt protoporphyrin (CoPP)-treated groups. Assay methods for the therapeutic effect include western blot analysis, enzyme-linked immunosorbent assay, gelatin zymography, blood–brain barrier permeability evaluation and eosinophil count in cerebrospinal fluid. The combination of albendazole (ABZ) and CoPP significantly decreased pro-inflammatory cytokines, tumor necrosis factor-α, interleukin (IL)-1β, IL-5, and IL-33 but significantly increased anti-inflammatory cytokines IL-10 and transforming growth factor-β. In addition, worm recovery, matrix metalloproteinase-9, BBB permeability, and eosinophil counts were decreased in the ABZ and CoPP co-treated groups. Induction of HO-1 with CoPP strongly inhibited the protein levels of caspase-3 and increased the induction of annexin-V and B-cell leukemia 2. Thus, co-treatment with ABZ and CoPP prevented A. cantonensis-induced eosinophilic meningoencephalitis and its anti-apoptotic effect by promoting HO-1 signaling prior to BBB dysfunction. HO-1 induction might be a therapeutic modality for eosinophilic meningoencephalitis.  相似文献   

10.
Preeclampsia (PE) is one of the leading causes of fetal and maternal morbidity, affecting 5-10% of all pregnancies, and lacks an effective treatment. The exact etiology of the disorder is unclear, but placental ischemia has been shown to be a central causative agent. In response to placental ischemia, the antiangiogenic protein fms-like tyrosine kinase-1 (sFlt-1), a VEGF antagonist, and reactive oxygen species are secreted, leading to the maternal syndrome. One promising therapeutic approach to treat PE is through manipulation of the heme oxygenase-1 (HO-1) protein. It has been previously reported that HO-1 and carbon monoxide downregulate sFlt-1 production in vitro, and we have recently shown that HO-1 induction significantly attenuates placental ischemia-induced hypertension, partially through normalization of the sFlt-1-to-VEGF ratio in the placenta. The purpose of this study was to determine whether HO-1 induction would have beneficial effects independently of sFlt-1 suppression. To that end, pregnant rats were continuously infused with recombinant sFlt-1 from gestational days 14-19, and circulating sFlt-1 increased approximately twofold, similar to rats with experimentally induced placental ischemia. In response, mean arterial pressure increased 17 mmHg, which was completely normalized by HO-1 induction. Unbound circulating VEGF was decreased ~17% in response to sFlt-1 infusion but was increased ~50% in response to HO-1 induction. Finally, endothelial function was improved as measured by reductions in vascular expression of preproendothelin mRNA. In conclusion, manipulation of HO-1 presents an intriguing therapeutic approach to the treatment of PE.  相似文献   

11.
Transient reduction in coronary perfusion pressure in the isolated mouse heart increases microvascular resistance (paradoxical vasoconstriction) by an endothelium-mediated mechanism. To assess the presence and extent of paradoxical vasoconstriction in hearts from normal and diabetic rats and to determine whether increased heme oxygenase (HO)-1 expression and HO activity, using cobalt protoporphyrin (CoPP), attenuates coronary microvascular response, male Wistar rats were rendered diabetic with nicotinamide/streptozotocin for 2 wk and either CoPP or vehicle was administered by intraperitoneal injection weekly for 3 wk (0.5 mg/100 g body wt). The isolated beating nonworking heart was submitted to transient low perfusion pressure (20 mmHg), and coronary resistance (CR) was measured. During low perfusion pressure, CR increased and was associated with increased lactate release. In diabetic rats, CR was higher, HO-1 expression and endothelial nitric oxide synthase were downregulated, and inducible nitric oxide synthase and O(2)(-) were upregulated. After 3 wk of CoPP treatment, HO activity was significantly increased in the heart. Upregulation of HO-1 expression and HO activity by CoPP resulted in the abolition of paradoxical vasoconstriction and a reduction in oxidative ischemic damage. In addition, there was a marked increase in serum adiponectin. Elevated HO-1 expression was associated with increased expression of cardiac endothelial nitric oxide synthase, B-cell leukemia/lymphoma extra long, and phospho activator protein kinase levels and decreased levels of inducible nitric oxide synthase and malondialdehyde. These results suggest a critical role for HO-1 in microvascular tone control and myocardial protection during ischemia in both normal and mildly diabetic rats through the modulation of constitutive and inducible nitric oxide synthase expression and activity, and an increase in serum adiponectin.  相似文献   

12.
IL-6/STAT3 pathway is involved in a variety of biological responses, including cell proliferation, differentiation, apoptosis, and inflammation. In our present study, we found that CO releasing molecules (CORMs) suppress IL-6-induced STAT3 phosphorylation, nuclear translocation and transactivity in endothelial cells (ECs). CO is a byproduct of heme degradation mediated by heme oxygenase (HO-1). However, CORMs can induce HO-1 expression and then inhibit STAT3 phosphorylation. CO has been found to increase a low level ROS and which may induce protein glutathionylation. We hypothesized that CORMs increases protein glutathionylation and inhibits STAT3 activation. We found that CORMs increase the intracellular GSSG level and induce the glutathionylation of multiple proteins including STAT3. GSSG can inhibit STAT3 phosphorylation and increase STAT3 glutathionylation whereas the antioxidant enzyme catalase can suppress the glutathionylation. Furthermore, catalase blocks the inhibition of STAT3 phosphorylation by CORMs treatment. The inhibition of glutathione synthesis by BSO was also found to attenuate STAT3 glutathionylation and its inhibition of STAT3 phosphorylation. We further found that HO-1 increases STAT3 glutathionylation and that HO-1 siRNA attenuates CORM-induced STAT3 glutathionylation. Hence, the inhibition of STAT3 activation is likely to occur via a CO-mediated increase in the GSSG level, which augments protein glutathionylation, and CO-induced HO-1 expression, which may enhance and maintain its effects in IL-6-treated ECs.  相似文献   

13.
14.
Most chronic liver diseases are accompanied by oxidative stress, which may induce apoptosis in hepatocytes and liver injury. Oxidative stress induces heme oxygenase-1 (HO-1) expression. This stress-responsive cytoprotective protein is responsible for heme degradation into carbon monoxide (CO), free iron, and biliverdin. CO is an important intracellular messenger; however, the exact mechanisms responsible for its cytoprotective effect are not yet elucidated. Thus, we investigated whether HO-1 and CO protect primary hepatocytes against oxidative-stress-induced apoptosis. In vivo, bile duct ligation was used as model of chronic liver disease. In vitro, primary hepatocytes were exposed to the superoxide anion donor menadione in a normal and in a CO-- containing atmosphere. Apoptosis was determined by measuring caspase-9, -6, -3 activity and poly(ADP-ribose) polymerase cleavage, and necrosis was determined by Sytox green staining. The results showed that (1) HO-1 is induced in chronic cholestatic liver disease, (2) superoxide anions time- and dose-dependently induce HO-1 activity, (3) HO-1 overexpression inhibits superoxide-anions-induced apoptosis, and (4) CO blocks superoxide-anions-induced JNK phosphorylation and caspase-9, -6, -3 activation and abolishes apoptosis but does not increase necrosis. We conclude that HO-1 and CO protect primary hepatocytes against superoxide-anions-induced apoptosis partially via inhibition of JNK activity. CO could represent an important candidate for the treatment of liver diseases.  相似文献   

15.
Intracoronary delivery of c-kit-positive human cardiac stem cells (hCSCs) is a promising approach to repair the infarcted heart, but it is severely limited by the poor survival of donor cells. Cobalt protoporphyrin (CoPP), a well known heme oxygenase 1 inducer, has been used to promote endogenous CO generation and protect against ischemia/reperfusion injury. Therefore, we determined whether preconditioning hCSCs with CoPP promotes CSC survival. c-kit-positive, lineage-negative hCSCs were isolated from human heart biopsies. Lactate dehydrogenase release assays demonstrated that preconditioning CSCs with CoPP markedly enhanced cell survival after oxidative stress induced by H2O2, concomitant with up-regulation of heme oxygenase 1, COX-2, and anti-apoptotic proteins (BCL2, BCL2-A1, and MCL-1) and increased phosphorylation of NRF2. Apoptotic cytometric assays showed that pretreatment of CSCs with CoPP enhanced the cells'' resistance to apoptosis induced by oxidative stress. Conversely, knocking down HO-1, COX-2, or NRF2 by shRNA gene silencing abrogated the cytoprotective effects of CoPP. Further, preconditioning CSCs with CoPP led to a global increase in release of cytokines, such as EGF, FGFs, colony-stimulating factors, and chemokine ligand. Conditioned medium from cells pretreated with CoPP conferred naive CSCs remarkable resistance to apoptosis, demonstrating that cytokines released by preconditioned cells play a key role in the anti-apoptotic effects of CoPP. Preconditioning CSCs with CoPP also induced an increase in the phosphorylation of Erk1/2, which are known to modulate multiple pro-survival genes. These results potentially provide a simple and effective strategy to enhance survival of CSCs after transplantation and, therefore, their efficacy in repairing infarcted myocardium.  相似文献   

16.
CD40 is critically involved in Fas-mediated cholangiocyte apoptosis during liver inflammation, but the underlying signalling events are poorly understood. Our recent work implicated AP-1 in CD40-induced cholangiocyte apoptosis, but suggested involvement of other signalling pathways. Because STAT3 has been implicated in liver regeneration we investigated this signalling pathway during CD40 mediated cholangiocyte apoptosis. Western immunoblotting, electrophoretic mobility gel shift assays, In situ DNA end labelling and caspase-3 activity were used to investigate intracellular signalling and apoptosis in primary human cholangiocytes following CD40 activation. CD40-activation induced caspase-3 dependent cholangiocyte apoptosis and 3-fold increases in JNK/ERK phosphorylation (concomitant with increased AP-1 binding activity) and 4-fold increases in pSTAT3, which were sustained for up to 24 h. Protein levels of c-Jun, c-Fos and pSTAT3 confirmed the upregulation. Phosphorylation of p38 remained unchanged suggesting that this MAP kinase was not involved in CD40 mediated apoptosis. Increased JAK2 phosphorylation accompanied increased STAT3 phosphorylation after CD40 ligation. Cholangiocytes were also shown to express JAK1 and 3 which was phosphorylated following control stimulation with TNFalpha or IL2 respectively but not after CD40 ligation. JNK, ERK and JAK2 inhibitors partially abrogated apoptosis and when used in combination reduced it to basal levels. In conclusion, induction of CD40-mediated cholangiocyte apoptosis requires JAK2-mediated phosphorylation of STAT3 as well as sustained JNK1/2, ERK1/2 activation. This study demonstrates that STAT3 can function as a proapoptotic factor in primary human liver epithelial cells.  相似文献   

17.
18.
Several recently published studies have suggested that decreasing VEGF levels result in placental oxidative stress in preeclampsia, although the question as to how decreased VEGF concentrations increase oxidative stress still remains unanswered. Here, we show that VEGF activated Nrf2, the main regulating factor of the intracellular redox balance, in the cytotrophic cell line BeWo. In turn, this activated the production of antioxidative enzymes thioredoxin, thioredoxin reductase, and heme oxygenase-1, which showed a decrease in their expression in the placentas of preeclamptic women. Nevertheless, this activation occurred without oxidative stress stimulus. As a consequence, the activation of Nrf2 protected BeWo cells against H(2)O(2)/Fe(2+)-induced oxidative damage. We further show that VEGF up-regulated the expression of itself. A positive feedback loop was described in which VEGF activated Nrf2 in an ERK1/2-dependent manner; the up-regulation of HO-1 expression by Nrf2 augmented the production of carbon monoxide, which in turn up-regulated VEGF expression. In conclusion, VEGF induces the Nrf2 pathway to protect against oxidative stress and, via a positive feedback loop, to elevate VEGF expression. Therefore, decreased VEGF bioavailability during preeclampsia may result in higher vulnerability to placental oxidative cell damage and a further reduction of VEGF bioavailability, a vicious circle that may end up in preeclampsia.  相似文献   

19.
Eclampsia, defined as unexplained seizure in a woman with preeclampsia, is a life-threatening complication of pregnancy with unclear etiology. Magnesium sulfate (MgSO4) is the leading eclamptic seizure prophylactic, yet its mechanism of action remains unclear. Here, we hypothesized severe preeclampsia is a state of increased seizure susceptibility due to blood-brain barrier (BBB) disruption and neuroinflammation that lowers seizure threshold. Further, MgSO4 decreases seizure susceptibility by protecting the BBB and preventing neuroinflammation. To model severe preeclampsia, placental ischemia (reduced uteroplacental perfusion pressure; RUPP) was combined with a high cholesterol diet (HC) to cause maternal endothelial dysfunction. RUPP+HC rats developed symptoms associated with severe preeclampsia, including hypertension, oxidative stress, endothelial dysfunction and fetal and placental growth restriction. Seizure threshold was determined by quantifying the amount of pentylenetetrazole (PTZ; mg/kg) required to elicit seizure in RUPP+HC±MgSO4 and compared to normal pregnant controls (n = 6/group; gestational day 20). RUPP+HC rats were more sensitive to PTZ with seizure threshold being ∼65% lower vs. control (12.4±1.7 vs. 36.7±3.9 mg/kg PTZ; p<0.05) that was reversed by MgSO4 (45.7±8.7 mg/kg PTZ; p<0.05 vs. RUPP+HC). BBB permeability to sodium fluorescein, measured in-vivo (n = 5–7/group), was increased in RUPP+HC vs. control rats, with more tracer passing into the brain (15.9±1.0 vs. 12.2±0.3 counts/gram ×1000; p<0.05) and was unaffected by MgSO4 (15.6±1.0 counts/gram ×1000; p<0.05 vs. controls). In addition, RUPP+HC rats were in a state of neuroinflammation, indicated by 35±2% of microglia being active compared to 9±2% in normal pregnancy (p<0.01; n = 3–8/group). MgSO4 treatment reversed neuroinflammation, reducing microglial activation to 6±2% (p<0.01 vs. RUPP+HC). Overall, RUPP+HC rats were in a state of augmented seizure susceptibility potentially due to increased BBB permeability and neuroinflammation. MgSO4 treatment reversed this, increasing seizure threshold and decreasing neuroinflammation, without affecting BBB permeability. Thus, reducing neuroinflammation may be one mechanism by which MgSO4 prevents eclampsia during severe preeclampsia.  相似文献   

20.
We have examined the protective effect and mechanisms of heme oxygenase-1 (HO-1) induction in rat liver model of ex vivo cold ischemia preservation using cobalt protoporphyrin (CoPP) as HO-1 inducer and zinc protoporphyrin (ZnPP) as HO-1 inhibitor. There was a decrease in both aspartate transaminase and lactate dehydrogenase activities and in malondialdehyde level in liver of the CoPP-treated group compared with controls (p < 0.05). In the CoPP-treated rats, the histological signs of reperfusion injury were much lower than in control. Up-regulation of HO-1 expression was also associated with reduced levels of tumor necrosis factor α and interleukin-6. Markedly fewer apoptotic liver cells (determined by TUNEL assay) could be detected in CoPP-treated group compared with the control group. These protective effects were prevented by administration of ZnPP. In conclusion, induction of HO-1 provides protection against liver injury during cold ischemia preservation and improves the preservation of liver graft. The mechanisms underlying these beneficial effects include reduction of oxidative injury and of inflammatory response and prevention of apoptosis. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 5, pp. 674–681.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号