首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction: Multifactorial disorders are the result of nonlinear interactions of several factors; therefore, a reductionist approach does not appear to be appropriate. Proteomics is a global approach that can be efficiently used to investigate pathogenetic mechanisms of neurodegenerative diseases.

Areas covered: Here, we report a general introduction about the systems biology approach and mechanistic insights recently obtained by over-representation analysis of proteomics data of cellular and animal models of Alzheimer’s disease, Parkinson’s disease and other neurodegenerative disorders, as well as of affected human tissues.

Expert commentary: As an inductive method, proteomics is based on unbiased observations that further require validation of generated hypotheses. Pathway databases and over-representation analysis tools allow researchers to assign an expectation value to pathogenetic mechanisms linked to neurodegenerative diseases. The systems biology approach based on omics data may be the key to unravel the complex mechanisms underlying neurodegeneration.  相似文献   


2.
正Autophagy is an intracellular catabolic system in which cytoplasmic proteins or organelles are translocated into lysosomes for degradation.Three different types of autophagy have been identified as macroautophagy,microautophagy,and chaperone-mediated autophagy(CMA).In macroautophagy,double-membraned phagophore develops autophagosome vesicles,which subsequently fuse with lysosomes to form  相似文献   

3.
《Autophagy》2013,9(5):663-675
The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP) are the two most important components of cellular mechanisms for protein degradation. In the present study we investigated the functional relationship of the two systems and the interactional role of p53 in vitro. Our study showed that the proteasome inhibitor lactacystin induced an increase in p53 level and autophagy activity, whereas inhibition of p53 by pifithrin-α or small interference RNA (siRNA) of p53 attenuated the autophagy induction and increased protein aggregation. Furthermore, we found that the pretreatment with the autophagy inhibitor 3-methyladenine or Beclin 1 siRNA further activated p53 and its downstream apoptotic pathways, while the autophagy inducer rapamycin showed the opposite effects. Moreover, we demonstrated that rapamycin pretreatment increased tyrosine hydroxylase (TH) protein level in dopamine (DA) neurons, which was associated with its induction of autophagy to degrade aggregated proteins. Our results suggest that p53 can mediate proteasomal inhibition-induced autophagy enhancement which in turn can partially block p53 or its downstream mitochondria-dependent apoptotic pathways. Further autophagy induction with rapamycin protects DA neurons from lactacystin-mediated cell death by downregulating p53 and its related apoptotic pathways and by inducing autophagy to degrade aggregated proteins. Therefore, rapamycin may be a promising drug for protection against neuronal injury relevant to Parkinson’s disease (PD). Our studies thus provide a mechanistic insight into the functional link between the two protein degradation systems.  相似文献   

4.
Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR''s ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington''s disease and phospholipase C (norpA)–mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.  相似文献   

5.
6.
7.
8.
9.
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.  相似文献   

10.
Magnesium (Mg2+) is a mineral with the ability to influence cell proliferation and to modulate inflammatory/immune responses, due to its anti-inflammatory properties. In addition, mesenchymal stem cells (MSCs) modulate the function of all major immune cell populations. Knowing that, the current work aimed to investigate the effects of Mg2+ enrichment, and its influence on the immunomodulatory capacity of MSCs. Murine C3H/10T1/2 MSCs were cultivated in media with different concentrations of Mg2+ (0, 1, 3 and 5 mM), in order to evaluate the effects of Mg2+ on MSC immunomodulatory properties, cell proliferation rates, expression of NFκB and STAT-3, production of IL-1β, IL-6, TGF-β, IL-10, PGE2 and NO, and TRPM7 expression. The results showed that TRPM7 is expressed in MSCs, but Mg2+, in the way that cells were cultivated, did not affect TRPM7 expression. Additionally, there was no difference in the intracellular concentration of Mg2+. Mg2+, especially at 5 mM, raised proliferation rates of MSCs, and modulated immune responses by decreasing levels of IL-1β and IL-6, and by increasing levels of IL-10 and PGE2 in cells stimulated with LPS or TNF-α. In addition, MSCs cultured in 5 mM Mg2+ expressed lower levels of pNFκB/NFκB and higher levels of pSTAT-3/STAT-3. Furthermore, conditioned media from MSCs reduced lymphocyte and macrophage proliferation, but Mg2+ did not affect this parameter. In addition, conditioned media from MSCs cultured at 5 mM of Mg2+ modulated the production profile of cytokines, especially of IL-1β and IL-6 in macrophages. In conclusion, Mg2+ is able to modulate some immunoregulatory properties of MSCs.  相似文献   

11.
Recent studies have shown that microRNAs(miRNAs) play an important role in cell differentiation, growth, and death, including the functional study of miRNAs in tumorigenesis. To date, miRNA expression profiles in many types of cancers have been identified and miRNA expression signatures associated with types and cytogenetics of leukemia have also been reported. Increasing evidence has shown that miRNAs could function as either tumor suppressors or oncogenes in cancers such as leukemia, while other miRNAs might be benefitcial for diagnosis and prognosis, predicted to be newly developed biomarkers. In this review, we summarize the recent progress about miRNAs in leukemia and present a miRNA-mediated network involved in differentiation, proliferation and apoptosis predicted to be the roles of miRNAs in the pathogenesis of leukemia. Supported by National Natural Science Foundation of China (Grant No. 30672254 and 30872784), National High-Tech Research and Development Program of China (Grant No. 2008AA02Z106).  相似文献   

12.
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.  相似文献   

13.
Autophagy is a highly conserved process that degrades cellular long-lived proteins and organelles. Accumulating evidence indicates that autophagy plays a critical role in kidney maintenance, diseases and aging. Ischemic, toxic, immunological, and oxidative insults can cause an induction of autophagy in renal epithelial cells modifying the course of various kidney diseases. This review summarizes recent insights on the role of autophagy in kidney physiology and diseases alluding to possible novel intervention strategies for treating specific kidney disorders by modifying autophagy.  相似文献   

14.
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases.  相似文献   

15.
成熟的神经细胞属于终末分化细胞,具有不可再生性。神经退行性疾病以及其他脑损伤引起的神经元缺失,难以自发修复取代。如何修复大脑中受损的神经细胞、补充神经细胞已成为治疗各类神经系统疾病的关键。本综述将通过干细胞移植和诱导星形胶质细胞去分化两种途径来介绍针对神经退行性疾病和脑损伤的最新疗法。  相似文献   

16.
According to the free radical theory, aging can be considered as a progressive, inevitable process partially related to the accumulation of oxidative damage into biomolecules -- nucleic acids, lipids, proteins or carbohydrates -- due to an imbalance between prooxidants and antioxidants in favor of the former. More recently also the pathogenesis of several diseases has been linked to a condition of oxidative stress. In this review we focus our attention on the evidence of oxidative stress in aging brain, some of the most important neurodegenerative diseases -- Alzheimer's disease (AD), mild cognitive impairment (MCI), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) -- and in two common and highly disabling vascular pathologies--stroke and cardiac failure. Particular attention will be given to the current knowledge about the biomarkers of oxidative stress that can be possibly used to monitor their severity and outcome.  相似文献   

17.
High-density lipoproteins (HDL) play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDL, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).  相似文献   

18.
自体吞噬在细胞死亡中的角色   总被引:2,自引:0,他引:2  
Xu ZY  Li Q  Li YX  Liu S  Yu CH 《生理科学进展》2004,35(4):341-344
一直以来人们认为自主性细胞死亡就是凋亡。然而 ,最近的研究表明 ,自主性细胞死亡不仅包括凋亡 ,还包括自体吞噬。自体吞噬通过与凋亡不同的降解机制 (膜包被降解 )和分子机制 (特定基因的激活 ) ,使细胞在某些特殊环境如饥饿、发育、分化等条件下自主死亡。在自主性细胞死亡中 ,自体吞噬与凋亡是两个既相互独立又紧密相关的过程。对自体吞噬机制的了解 ,必将为自主性细胞死亡机制的阐明及其相关疾病的治疗提供新的思路。  相似文献   

19.
Kinetin (KN) action in rice self-defense mechanism was studied using our established 2-week-old rice (Oryza sativa L. japonica-type cv. Nipponbare) seedling in vitro model system. It was strikingly observed that KN caused formation of brownish necrotic microlesions in leaves, suggesting it triggers a stress response in rice. Subsequent northern analyses revealed differential regulation (both up-and down-regulations) of 10 prominent defense/stress-related marker genes, including the critical pathogenesis-related (PR) protein genes of class 1, 5 and 10. A systemic effect of KN in leaves was shown using OsPR1b (basic) and OsPOX (peroxidase) genes as representatives. KN also exclusively triggered potent accumulation of PR proteins (OsPR5 and OsPR10), and a phytoalexin, sakuranetin. Interestingly, as KN failed to induce jasmonic acid (JA) inducible genes (OsPR1a and JIOsPR10), and had almost no effect on accumulated endogenous JA level due to wounding by cut, KN might act through a yet unknown (and JA-independent) pathway. These results provide a new aspect on the role of KN as a potent activator of the stress responses in the rice plant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号