首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aerobic capacity model postulates that high basal metabolic rates (BMR) underlying endothermy evolved as a correlated response to the selection on maximal levels of oxygen consumption () associated with locomotor activity. The recent assimilation capacity model specifically assumes that high BMR evolved as a by‐product of the selection for effective parental care, which required long‐term locomotor activity fuelled by energy assimilated from food. To test both models, we compared metabolic and behavioural correlates in males of laboratory mice divergently selected on body mass‐corrected BMR. elicited by running on the treadmill did not differ between selection lines, which points to the lack of genetic correlation between BMR and . In contrast, there was a positive, genetic correlation between spontaneous long‐term locomotor activity, food intake and BMR. Our results therefore corroborate predictions of the assimilation capacity model of endothermy evolution.  相似文献   

2.
This study was conducted to determine whether inbreeding coefficients of selected parents or of progeny differed between lines of mice selected for increased or decreased responsiveness to a nutritional toxicosis. A second objective was to determine whether the influence of inbreeding of parents and/or progeny on reproductive traits differed between those lines. Mice were selected divergently for 8 generations for the effect on post-weaning growth of endophyte-infected fescue seed in their diet. Forty pairs (or in Generation 7, 20 pairs) were selected and mated per generation in each line. Inbreeding increased 0.5 to 0.6% per generation in both lines, a rate close to that predicted from genetic theory. Inbreeding coefficients of selected parents were not higher in the susceptible than in the resistant line. A difference would have been expected if the inbreeding coefficient had been correlated with susceptibility to toxicosis. The magnitudes of inbreeding depression for reproductive traits did not differ significantly between lines. The average inbreeding coefficient of the potential litter tended to be higher in nonfertile than fertile matings (P = 0.10), but inbreeding coefficients of sires and dams did not differ between successful and unsuccessful matings. Inbred litters tended to be born earlier than noninbred litters (P = 0.10). Inbred dams produced smaller litters than noninbred dams (main effect P < 0.05) but only when the litter also was inbred (interaction P < 0.01). Sex ratio was not influenced by inbreeding of sire, dam or litter, but there was a higher proportion of male progeny in the susceptible than in the resistant line (P = 0.01). To avoid reduced reproductive fitness, laboratory animal populations should be managed to minimize inbreeding of progeny and dam.  相似文献   

3.
Most mammals are known to have clear circadian rhythms of body temperature (Tb) and metabolic rate. Large parts of the rhythms correspond to the oscillation of nonshivering thermogenesis (NST), dependent on visceral organ mass, and, affected by mass of brown adipose tissue (BAT). I tested whether: (1) a different levels of BMR result in respective changes of Tb values and the magnitude of daily RMR oscillations both within and below thermoneutrality; (2) the amplitude of daily variation of RMR depends on ambient temperature (Ta). I studied: (1) daily variation of body temperature at Ta of 23 °C, and (2) the rate of resting metabolism (RMR) within and below thermoneutrality at the time of minimum and increasing Tb (minimum and maximum NST capacity), in two lines of laboratory mice subjected to divergent, artificial selection toward high (HBMR) and low (LBMR) basal rate of metabolism (BMR). All mice had a clear circadian rhythm of Tb with minimum of 36.4±0.2 °C at 7:00 and maximum of 37.8±0.2 °C at 21:00. Their RMR measured below thermoneutrality exhibited significant daily variation, with the maximum between 16:00 and 19:00, when Tb was rising. Within thermoneutral zone (TNZ) I found between-line, but not between-time, differences in RMR. All between-line differences in RMR could be explained by the magnitude of BMR. I did not find any between-line differences of RMR value in temperatures below thermoneutrality. The amplitude of daily variation of RMR measured below TNZ depended neither on the Ta value nor on level of BMR (or visceral organs).  相似文献   

4.
To study whether mounting an immune response is energetically costly, mice from two lines divergently selected for high (H-BMR) and low (L-BMR) basal metabolic rate (BMR) were immunized with sheep red blood cells. Their energy budgets were then additionally burdened by sudden transfer from an ambient temperature of 23 degrees C to 5 degrees C. We found that the immune response of H-BMR mice was lower than that of L-BMR mice. However, the interaction between line affiliation and ambient temperature was not significant and cold exposure did not result in immunosuppression in either line. At 23 degrees C the animals of both lines seemed to cover the costs of immune response by increasing food consumption and digestive efficiency. This was not observed at 5 degrees C, so these costs must have been covered at the expense of other components of the energy budget. Cold exposure itself elicited a considerable increase in food intake and the mass of internal organs, which were also heavier in H-BMR than in L-BMR mice. However, irrespective of the temperature or line affiliation, immunized mice had smaller intestines, while cold-exposed immunized mice had smaller hearts. Furthermore, the observed larger mass of the liver and kidneys in immunized mice of both lines kept at 23 degrees C was not observed at 5 degrees C. Hence, immunization compromised upregulation of the function of metabolically active internal organs, essential for meeting the energetic demands of cold. We conclude that the difficulties with a straightforward demonstration of the energetic costs of immune responses in these animals stem from the extreme flexibility of their energy budgets.  相似文献   

5.
I wanted to follow the correlation between level of basal metabolic rate (BMR) and maximum response to injection of noradrenaline (MMRNA) in two lines of laboratory mice subjected to divergent, artificial selection toward high BMR (HBMR) and low BMR (LBMR). HBMR animals had heavier visceral organs (heart, liver, kidney, intestine), but their regulatory NST (MMRNA–BMR) was lower and interscapular brown adipose tissue (IBAT) lighter than in LBMR mice. Obligatory part of nonshivering thermogenesis (NST) (in other words BMR) depended on visceral organ mass, whereas regulatory NST correlates with mass of IBAT. BMR was not correlated with total NST capacity, but phenotypic correlation between obligatory and regulatory NST was negative. This suggests possibility of substitution of obligatory NST to thermoregulation in a place of the regulatory NST. Then total thermoregulatory energy expenditures do not change.  相似文献   

6.
The aerobic capacity model postulates that high basal metabolic rates (BMR) associated with endothermy evolved as a correlated response to the selection on maximum, peak metabolic rate Vo2max. Furthermore, the model assumes that BMR and Vo2max are causally linked, and therefore, evolutionary changes in their levels cannot occur independently. To test this, we compared metabolic and anatomical correlates of selection for high and low body mass-corrected BMR in males of laboratory mice of F18 and F19 selected generations. Divergent selection resulted in between-line difference in BMR equivalent to 2.3 phenotypic standard deviation units. Vo2max elicited by forced swimming in 20 degrees C water was higher in the low BMR than high BMR line and did not differ between the lines when elicited by exposure to heliox at -2.5 degrees C. Moreover, the magnitude of swim- and heliox-induced hypothermia was significantly smaller in low BMR mice, whereas their interscapular brown adipose tissue was larger than in high BMR mice. Our results are therefore at variance with the predictions of aerobic capacity model. The selection also resulted in correlated response in food consumption (C) and masses of metabolically active internal organs: kidneys, liver, small intestine, and heart, which fuel maximum, sustained metabolic rate (SusMR) rather than Vo2max. These correlated responses were strong enough to claim the existence of positive, genetic correlations between BMR and the mass of viscera as well as C. Thus, our findings support the suggestion that BMR evolved as a correlated response to selection for SusMR, not Vo2max. In functional terms BMR should therefore be interpreted as a measure of energetic costs of maintenance of metabolic machinery necessary to sustain high levels of energy assimilation rate.  相似文献   

7.
Proximal mechanisms describing the evolution of high levels of basal metabolic rate (BMR) in endotherms are one of the most intriguing problems of evolutionary physiology. Because BMR mostly reflects metabolic activity of internal organs, evolutionary increase in BMR could have been realized by an increase in relative organ size and/or mass-specific cellular metabolic rate. According to the "membrane pacemaker" theory of metabolism, the latter is mediated by an increase in the average number of double bonds (unsaturation index) in cell membrane fatty acids. To test this, we investigated the effect of divergent artificial selection for body-mass-corrected BMR on the mass of internal organs and the fatty acid composition of cell membranes in laboratory mice (Mus musculus). Mice from the high-BMR line had considerably larger liver, kidneys, heart, and intestines. In contrast, the unsaturation index of liver cell membranes was significantly higher in low-BMR mice, mainly because of the significantly higher content of highly polyunsaturated 22 : 6 docosahexanoic fatty acid. Thus, divergent selection for BMR did not affect fatty acyl composition of liver and kidney phospholipids in the direction predicted by the membrane pacemaker theory. We conclude that an intraspecific increase in BMR may rapidly evolve mainly as a result of the changes in size of internal organs, without simultaneous increase of the unsaturation index in cell membrane lipids.  相似文献   

8.
9.
10.
Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.  相似文献   

11.
In an effort to identify genes that may be important for drug-abuse liability, we mapped behavioral quantitative trait loci (bQTL) for sensitivity to the locomotor stimulant effect of methamphetamine (MA) using two mouse lines that were selectively bred for high MA-induced activity (HMACT) or low MA-induced activity (LMACT). We then examined gene expression differences between these lines in the nucleus accumbens, using 20 U74Av2 Affymetrix microarrays and quantitative polymerase chain reaction (qPCR). Expression differences were detected for several genes, including Casein Kinase 1 Epsilon (Csnkle), glutamate receptor, ionotropic, AMPA1 (GluR1), GABA B1 receptor (Gabbr1), and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (Darpp-32). We used the database to identify QTL that regulate the expression of the genes identified by the microarrays (expression QTL; eQTL). This approach identified an eQTL for Csnkle on Chromosome 15 (LOD=3.8) that comapped with a bQTL for the MA stimulation phenotype (LOD=4.5), suggesting that a single allele may cause both traits. The chromosomal region containing this QTL has previously been associated with sensitivity to the stimulant effects of cocaine. These results suggest that selection was associated with (and likely caused) altered gene expression that is partially attributable to different frequencies of gene expression polymorphisms. Combining classical genetics with analysis of whole-genome gene expression and bioinformatic resources provides a powerful method for provisionally identifying genes that influence complex traits. The identified genes provide excellent candidates for future hypothesis-driven studies, translational genetic studies, and pharmacological interventions.  相似文献   

12.
Maximal aerobic metabolic rate (MMR) is an important physiological and ecological variable that sets an upper limit to sustained, vigorous activity. How the oxygen cascade from the external environment to the mitochondria may affect MMR has been the subject of much interest, but little is known about the metabolic profiles that underpin variation in MMR. We tested how seven generations of artificial selection for high mass-independent MMR affected metabolite profiles of two skeletal muscles (gastrocnemius and plantaris) and the liver. MMR was 12.3% higher in mass selected for high MMR than in controls. Basal metabolic rate was 3.5% higher in selected mice than in controls. Artificial selection did not lead to detectable changes in the metabolic profiles from plantaris muscle, but in the liver amino acids and tricarboxylic acid cycle (TCA cycle) metabolites were lower in high-MMR mice than in controls. In gastrocnemius, amino acids and TCA cycle metabolites were higher in high-MMR mice than in controls, indicating elevated amino acid and energy metabolism. Moreover, in gastrocnemius free fatty acids and triacylglycerol fatty acids were lower in high-MMR mice than in controls. Because selection for high MMR was associated with changes in the resting metabolic profile of both liver and gastrocnemius, the result suggests a possible mechanistic link between resting metabolism and MMR. In addition, it is well established that diet and exercise affect the composition of fatty acids in muscle. The differences that we found between control lines and lines selected for high MMR demonstrate that the composition of fatty acids in muscle is also affected by genetic factors.  相似文献   

13.
BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life‐history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life‐history strategy on the population level.  相似文献   

14.
Delayed effects of cold stress on immune response in laboratory mice   总被引:5,自引:0,他引:5  
This study was undertaken to examine the trade-off between the cost of thermoregulation and immune function in laboratory mice. Mice were maintained either at 23 degrees C or cold exposed at 5 degrees C for 10 days. Then, they were immunized with sheep red blood cells. Thus, the cold-exposed mice had either experienced or not experienced cold stress prior to immunization. Cold stress elicited a substantial increase in food intake, accompanied by a significant reduction in food digestibility. An increase in mass of metabolically active internal organs (small intestines, heart and kidney) was observed in cold-exposed mice. These findings reassured us that costs of increased thermoregulation caused by cold stress were substantial. The immune response of mice exposed to long-lasting cold stress was significantly lower, but immune response was not affected in short-exposed mice. Differences in immune response between experimental groups accompanied changes in mass of immunocompetent organs (thymus and spleen). Our findings indicate that studies of trade-offs should account for the fact that resource reallocation in response to an environmental challenge may not be immediate. In fact, resource reallocation may be postponed until the new environmental state becomes permanent or until an organism attains physiological adaptation to the current conditions.  相似文献   

15.
16.
Objective: It is unclear if resting metabolic rate (RMR) and spontaneous physical activity (SPA) decrease in weight‐reduced non‐obese participants. Additionally, it is unknown if changes in SPA, measured in a respiratory chamber, reflect changes in free‐living physical activity level (PAL). Research Methods and Procedures: Participants (N = 48) were randomized into 4 groups for 6 months: calorie restriction (CR, 25% restriction), CR plus structured exercise (CR+EX, 12.5% restriction plus 12.5% increased energy expenditure via exercise), low‐calorie diet (LCD, 890 kcal/d supplement diet until 15% weight loss, then weight maintenance), and control (weight maintenance). Measurements were collected at baseline, Month 3, and Month 6. Body composition and RMR were measured by DXA and indirect calorimetry, respectively. Two measures of SPA were collected in a respiratory chamber (percent of time active and kcal/d). Free‐living PAL (PAL = total daily energy expenditure by doubly labeled water/RMR) was also measured. Regression equations at baseline were used to adjust RMR for fat‐free mass and SPA (kcal/d) for body weight. Results: Adjusted RMR decreased at Month 3 in the CR group and at Month 6 in the CR+EX and LCD groups. Neither measure of SPA decreased significantly in any group. PAL decreased at Month 3 in the CR and LCD groups, but not in the CR+EX group, who engaged in structured exercise. Changes in SPA in the chamber and free‐living PAL were not related. Discussion: Body weight is defended in non‐obese participants during modest caloric restriction, evidenced by metabolic adaptation of RMR and reduced energy expenditure through physical activity.  相似文献   

17.
This study examined the effects of three levels of dietary intake [ad libitum fed (AL), moderately severe (MSR), and severe restriction (SR)] and two levels of exercise [cage confinement (CC) and exercise training (E)] on 23-h resting metabolic rate (RMR) and body composition in 47 female Sprague-Dawley rats. At the end of the 9-wk study, the MSR and SR groups weighed approximately 81 and 61%, respectively, of the AL-CC group. RMR was depressed for the MSR and SR groups compared with the AL-CC group. This was true whether expressed on an absolute (ml/min) or relative (ml.min-1.kg-0.75) basis. On a relative basis, which accounts for changes caused by weight loss alone, the RMR decreased by approximately 12 and 19%, respectively, for the MSR and SR groups compared with the AL-CC group. Although E resulted in significant differences in fat mass, percent fat, percent water, and heart mass between the AL groups, there were no significant differences between E and CC groups at either the MSR or SR level of dietary intake for any of the variables measured (i.e., body composition, muscle mass, RMR). Thus E does not appear to affect the composition of lost weight or RMR during diet-induced weight loss for female rats of normal weight.  相似文献   

18.
A meta-analysis was used to examine the independent and interactive effects of dietary restriction, endurance exercise training and gender on resting metabolic rate (RMR). Sixty different group means (covering 650 subjects) were identified from the scientific literature and subjected to meta-analysis techniques. Collectively (i.e., all groups combined), body weight loss was greater (P < 0.05) for men ( 18 kg) than for women ( 12 kg). There were no statistically significant exercise training or gender effects on RMR during weight loss. Collectively (i.e., all groups combined), dietary restriction resulted in a – 0.59 kJ min–1 ( – 12%) decrease in RMR (P < 0.05). When normalized to body weight, RMR was reduced by less than 2% (P < 0.05). These data suggest that exercise training does not differentially affect RMR during diet-induced weight loss. In addition, decreases in resting metabolism appear to be proportional to the loss of the metabolically active tissue.  相似文献   

19.
A random-bred strain (Q) was established and divided into six replicates. Each replicate was divergently selected for 6-week weight (for over 30 generations) and each had an unselected control. We have investigated the H-2 haplotype of individual mice of the 18 selected Q strains to determine whether selection for size had also selected for H-2 or H-2-linked genes. From the results it appeared that only the H-2 b and H-2 q haplotypes were present in the foundation stock. A large number of individuals of the six small sublines were of H-2 bhaplotype, while the majority of those of the six large sublines were of the H-2 q haplotype. Individuals in the six control strains were H-2 b , H-2 q or both (i. e., H-2 heterozygotes and/or H-2 recombinants). These results suggest that control of body size is associated with H-2 or an H-2-linked gene(s).  相似文献   

20.
1. Plasma insulin-like growth factor-I (IGF-I) was measured in mice divergently selected for high and low lean tissue gain or high and low fat to body weight ratio, both before and after fasting and refeeding. 2. Selection for high lean tissue resulted in increased body weight and a higher basal IGF-I concentration at 10 weeks of age. 3. Selection resulting in a difference in fatness had no effect on IGF-I concentration. 4. Circulating IGF-I decreased more rapidly in response to 24 hr food withdrawal in growing (5-week-old) than in almost fully grown (10-week-old) animals from all lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号