首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem segments of adult plants of Ficus religiosa L. cultured on MS medium containing 1.0 mg/l 2,4-D produced callus. Shoots were regenerated when the induced calli were transferred to medium supplemented with 0.05 to 2.0 mg/l BAP. Callus derived shoots produced roots and developed into plantlets when transferred to medium supplemented with 1.0 mg/l NAA.Abbreviations MS Murashige and Skoog (1962) - BAP 6-benzylaminopurine - NAA naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

2.
高羊茅组织培养再生体系及GUS基因瞬间表达研究   总被引:5,自引:0,他引:5  
以成熟种子为外值体,对高羊茅纰织培养和植株再生体系进行了优化,分析了不同浓度2.4-D、6-BA和激动素对高羊茅愈伤组织诱导和愈伤组织分化成苗的影响.结果表明:9.0mg/L 2.4-L)对愈伤组织的诱导效果最佳.0.2mg/L激动素是愈伤组织分化成苗的最适浓度.二者的诱导率和分化率分别达到68.08%和45.83%。在愈伤组织继代培养基中附加1.0mg/L 2.4-D、0.5mg/L 6-BA和1.25mg/L CuSO4;有利于胚性愈伤组织的形成,可以明显促进愈伤组织分化。同时.采用基因枪法将GUS基因导入高羊茅愈伤组织中,通过组织化学染色检测到了GUS瞬间表达活性;并对影响CUS基因瞬间表达的因素进行了分析.以期为提高基因枪法遗传转化效率提供参考。  相似文献   

3.
多年生黑麦草成熟胚再生体系的建立及基因枪转化   总被引:4,自引:0,他引:4  
目的:建立以多年生黑麦草成熟胚为起始材料的再生体系,用于基因枪转化。方法:多年生黑麦草成熟种子在附加 5mg L 2,4 D的MS培养基上诱导愈伤组织,转至新继代培养基上产生胚性愈伤组织。分化培养基为无激素MS培养基。再生植株在培养基成分减半的无激素MS培养基生根,之后移栽至土壤。基于这一再生体系,用含有水稻几丁质酶基因RC2 4的质粒pARN6和含有草丁膦乙酰转移酶基因Bar的质粒pDB1,通过基因枪轰击胚性愈伤组织。用附加PPT的继代培养基进行转化植株的抗性筛选。结果:共获得 2 4 3株再生植株。通过PCR进行检测,获得1 8株整合有RC2 4基因的植株,1 5株整合有Bar基因的植株,同时转入 2个基因的植株 2株。  相似文献   

4.
A system for the production of transgenic papaya (Carica papaya L.) plants using zygotic embryos and embryogenic callus as target cells for particle bombardment is described. Phosphinothricin (bar ) and kanamycin (npt II) resistance genes were used as selectable markers, and the gus gene (uidA) as a reporter gene. Selection with 100 mg/l kanamycin and 4 mg/l phosphinothricin (PPT) yielded a total of over 90 resistant embryogenic colonies from three independent experiments using embryogenic callus as a target tissue. This represents an efficiency of 60 transgenic clones per gram of fresh weight callus bombarded. The efficiency of genetic transformation using zygotic embryos was lower, as only 8 independent resistant clones were recovered out of 645 bombarded zygotic embryos, giving a efficiency of 1.24%. Subsequent subculture of transgenic somatic embryos both from zygotic embryos and embryogenic callus led to the development of plants with apparently normal morphology. Histological, fluorimetric assay for GUS, NPT II assay and DNA analysis (Southern hybridization) showed that kanamycin /PPT resistant plants carried and expressed the transgenes.Abbreviations Gus -glucuronidase - NPTII neomycin phophotransferase II - bar phophinothricin acetyl transferase gene - Pat phosphinothricin acetyl transferase - PPT phosphinothricin - Km kanamycin - 2,4-D 2,4-dichlorophenoxyacetic acid - K kinetin - BAP benzylaminopurine - IBA indolbutyric acid  相似文献   

5.
A procedure for rapid multiplication of Chrysanthemum morifolium RAMAT cv. Birbal Sahni using leaf callus and stem (nodal/internodal) callus as well as node and apical shoots has been developed. Murashige and Skoog's medium (1962) supplemented with 2mg/1 2,4-D yielded good green calli from both leaf and stem segments within 2 weeks. About 1 cm × 1 cm callus regenerated 2–3 shoots after 3 weeks on MS solid medium supplemented with 0.1 mg/l IAA and 0.2 mg/l BAP. Each of the regenerated shoots when transferred to the same shooting medium without agar yielded about 150 new shoots, which in turn regenerated roots after another week in MS half strength or modified White's media (Rangaswamy, 1961). It has been estimated that about 1014 plantlets could be produced in a year from one expiant following the proposed protocol.Abbreviations BAP 6-benzylaminopurine - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog's (1962) medium  相似文献   

6.
A simple in vitro protocol was established for high frequency plant regeneration via organogenesis and somatic embryogenesis from the callus cultures derived from immature inflorescence segments of indica rice (Oryza sativa L cvs Safari-17 and Kasturi). Embryogenic and nodular calli were initiated on MSB medium supplemented with 2, 4-D and sucrose (3.0%, w/v). Somatic embryogenesis occurred after transfer of embryogenic calli to MSB medium containing 2.25 μM 2,4-D, 2.2 μM BAP, 2.9 μM thiamine HCl and 244.86 μM L-tryptophan. Plantlet/shoot regeneration occurred after transfer of embryogenic calli to MSB medium containing 17.6 μM BAP and 1.12 μM 2,4-D. Partial desiccation (up to 12, 24, 48, 72 and 96 h) of embryogenic calli prior to transfer to regeneration medium stimulated regeneration frequency. Highly significant (P<0.001) difference was observed for regeneration frequency and average number of plantlets/shoots regenerated per callus in partially desiccated calli in comparison to non-dehydrated calli. Regeneration frequency increased from 33.3% to 80% after 24 h of desiccation treatment to callus cultures of cv. Safari-17, and from 46.7% to 93.3% after 48 h of desiccation treatment to callus tissues of cv. Kasturi. Regenerated shoots were rooted on MSB medium supplemented with 4.9 μM IBA. Plants with well-developed roots were transferred to pots where they grew well and attained maturity.  相似文献   

7.
Efficient callus formation was achieved from cotyledon, stem, and leaf expiants of the domestic safflower cultivar Centennial on MS salts medium containing 1 mg/L BAP and 1 mg/L NAA. Shoot buds were regenerated from 26% of leaf-derived calli on callus induction medium, although attempts to root regenerated shoots were not successful. Centennial expiants inoculated with Agrobacterium tumefaciens containing NPT II and GUS genes produced kanamycin-resistant calli from which buds were regenerated. Transformation and stable integration of transgenes was confirmed by GUS assay and DNA hybridization in kanamycin-resistant calli, and GUS assay in regenerated shoots.Abbreviations BAP 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) - GUS -glucuronidase - IAA indole-3-acetic acid - NPT II neomycin phosphotransferase II  相似文献   

8.
Young inflorescence explants of Setaria italica in culture showed high capacity for regenerating plantlets through somatic embryogenesis. Embryogenic callus formation was initiated from the explants cultured on Murashige and Skoog's medium with 2 mg/l 2,4-D and 0.2–0.5 mg/l KT or BAP, but it was better for the maintenance of embryogenic growth to subculture the calli on the medium with 2,4-D and KT/BAP and on the medium with 2 mg/l 2iPA and 0.2 mg/l NAA alternately. A number of plantlets were regenerated when embryogenic calli were transferred onto the same basic medium but with 2 mg/l BAP and 0.5 mg/l NAA. Plant regeneration capacity has been maintained in some embryogenic calli during fourteen months of subculture.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - IAA 3-indoleacetic acid - 2iPA N6-(2-isopentenyl) adenosine - BAP 6-benzylaminopurine - KT kinetin - CH casein hydrolysate  相似文献   

9.
Embryogenic and non-embryogenic calluses were induced from 3,4,5 and 7d old coleoptile segments of indica rice (Oryza sativa L. cv. CH 1039). Compact, globular, yellow and creamy embryogenic and white friable non-embryogenic callus arose from the cut end and entire length of the coleoptile segments. Murashige and Skoog's (MS) medium supplemented with 2.5mg/1 2,4-D was used as callus induction medium. Plant regeneration from coleoptile segments occurred with the transfer of embryogenic callus to MS basal medium supplemented with 2.0mg/1 BAP and 0.5mg/1 NAA in combination. Average number of regenerated plants from one coleoptile ranged from9.1 to 14.0.Four day old coleoptiles showed the highest frequency of plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - MS Murashige and Skoog (1962) - NAA 1-naphthalene acetic acid  相似文献   

10.
An efficient method for in vitro micro propagation and genetic transformation of plants are crucial for both basic and applied research. Maize is one of the most important cereal crops around the world. Regeneration from immature embryo is hampered due to its unavailability round the year. On the contrary mature embryo especially tropical maize is recalcitrant toward tissue culture. Here we report a highly efficient regeneration (90%) system for maize by using 2 different approaches i.e., embryogenic and organogenic callus cultures. Seeds were germinated on MS medium supplemented with 5 mg/l 2,4-D and 3 mg/l BAP. Nodal regions of 2 wks old seedlings were longitudinally split upon isolation and subsequently placed on callus initiation medium. The maximum frequency of embryogenic callus formation (90%) was obtained on MS medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP in the dark conditions. The compact granular organogenic callus formation (85% frequency) was obtained on MS medium supplemented with 2.5 mg/l 2,4-D and 1.5 mg/l BAP at light conditions. MS medium supplemented with 2 mg/l BAP, 1 mg/l Kinetin and 0.5 mg/l NAA promoted the highest frequency of shoot induction. The highest frequency of root formation was observed when shoots were grown on MS medium. The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. The important advantage of this improved method is shortening of regeneration time by providing an efficient and rapid regeneration tool for obtaining more stable transformants from mature seeds of Indian tropical maize cultivar (HQPM-1).  相似文献   

11.
Androgenic haploids of the neem tree (Azadirachta indica A. Juss.) were produced by anther culture at the early- to late-uninucleate stage of pollen. Haploid formation occurred via callusing. The best medium for inducing callusing in the anther cultures was Murashige and Skoog's basal medium (MS) (9% sucrose) supplemented with 1 microM 2,4-D, 1 microM NAA and 5 microM BAP, while anther callus multiplied best on MS medium supplemented with 1 microM 2,4-D and 10 microM Kn. These calli differentiated shoots when transferred to a medium containing BAP; 5 microM BAP was optimum for young calli (75% cultures differentiated shoots), but older calli showed the best regeneration with 7.5 microM BAP. Shoots elongated at a lower concentration of BAP-0.5 microM. These shoots were multiplied by forced axillary branching and rooted in vitro. The plants were subsequently established in soil. Of the plants that regenerated from anther callus 60% were haploid, 20% were diploid and 20% were aneuploid.  相似文献   

12.
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine. Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin, a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques, we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596. The text was submitted by the authors in English.  相似文献   

13.
Long-term embryogenic lines were repeatedly obtained from nine asparagus (Asparagus officinalis L.) genotypes by the selection of rare events, which consisted of the emergence of either a few somatic embryos or an embryogenic callus from a restricted area of a primary callus. In the first case, somatic embryos emerged from 1 % of calli induced with naphtaleneacetic acid and transferred to a medium without auxin. Isolated and subcultured on hormone free medium, these embryos developed habituated embryogenic lines (H lines) growing by adventive embryogenesis. In the second case, 3 % of primary calli developed then subcultured on 2,4-dichlorophenoxyacetic acid (2,4-D) produced a new type of friable and yellowish-white callus, constituted of clusters of globular somatic embryos which can be continuously maintained on 2,4-D (2,4-D lines). Among 2,4-D lines, two types were identified by subculturing them on hormone–free medium. Half of the 2,4-D lines were habituated and half were 2,4-D dependent. Most plants regenerated from H lines exhibited a strong increase in embryogenic capacity compared to control plants, unlike plants regenerated from the 2,4-D dependent lines. This increased embryogenic capacity was transmitted to the progeny as a monogenic dominant trait. H lines would therefore be issued from mutation(s) occurring in vitro, conferring both the embryogenic and habituated phenotypes. On the contrary, in the 2,4-D dependent lines, the embryogenic processes appeared to remain under exogenous auxin control and no evidence of a mutational origin could be inferred from the behaviour of regenerated plants.  相似文献   

14.
Summary A system to regenerate fertile rice (Oryza sativa L.) plants (both indica and japonica varieties) from protoplasts isolated from anther-derived embryogenic haploid suspension cultures has been established. Green plants were regenerated from protoplast-derived cell clusters five months after suspension culture initiation. Protoplast yields and subsequent growth of the protoplast-derived microcalli were enhanced by transferring suspension cells into AA medium (Muller et al. 1978) three to four days prior to protoplast isolation. Protoplasts were cultured initially in Kao medium (Kao et al. 1977) and in association with nurse cells for four weeks. Protoplast-derived microcalli were transferred onto N6 (Chu et al. 1975) or MS (Murashige and Skoog 1962) media for callus proliferation. Callus growth was more rapid and the calli were more enbryogenic when grown on N6 medium. The 2,4-D concentration used to develop the suspension culture was important. Cell cultures grown in medium containing 0.5 mg/l 2,4-D released protoplasts whose plating efficiency was higher than for protoplasts obtained from suspension cultures grown in 2.0 mg/l 2,4-D. However, suspension cells grown in 2.0 mg/l 2,4-D were superior with regard to the ability of protoplast-derived calli to regenerate green plants. Amongst several hormone treatments evaluated, a combination of 0.5 mg/l NAA + 5.0 mg/l BAP resulted in the largest number of green plants regenerated. There were no significant differences between BAP or kinetin regarding total number of plants regenerated. More than 200 green plants have been produced form six independently initiated suspension cell lines. The number of regenerated plants per 106 protoplats plated anged from 0.4 to 20.0, and the average seed fertility of single panicles of these RO plants was about 40%.  相似文献   

15.
高赖氨酸蛋白基因导入水稻及可育转基因植株的获得   总被引:33,自引:0,他引:33  
构建了一个植物高效表达质粒,使来源于四棱豆(Psophocarpus tetragonolobus(L.)DC)的高赖氨酸蛋白基因(lys)受控于单子叶植物ubiqutin强启动子下表达。用基因枪法将其导入水稻(Oryza sativa L.)幼胚诱导的愈伤组织,经潮霉素抗性筛选,得到可育的再生植株。经PCR和Southem blotting检测,表明该基因已整合到水稻的基因组织。GUS组织化学染色表明转基因水稻植株的叶、茎和根中均有gus基因的表达。测定112株转基因水稻叶片中赖氨酸叶量,大部分植株有不同程度的提高,最高幅度为16.04%。  相似文献   

16.
Caryopsis culture of a minor millet (Paspalum scrobiculatum L. cv. PSC 1) on N6 medium supplemented with high concentrations of thidiazuron (TDZ, 11.25 µM and 22.5 µM), a phenylurea derivative known to simulate cytokinin action, resulted in the formation of multiple shoots from the base of the seedling. This is the first time that multiple-shoot formation by a seedling cultured on TDZ without a callus interphase has been reported in graminaceous crop plants. The presence of a cytokinin, 6-benzylaminopurine (BAP), at low or high concentrations failed to evoke any morphogenic response. The presence of the auxin 2,4-dichlorophenoxyacetic acid (2,4-D, 4.5 µM) either alone or with BAP (4.5 µM) resulted in the formation of embryogenic callus from the base of the seedlings, which subsequently differentiated into somatic embryos. The combination of TDZ and the auxin (4.5 µM, 2,4-D) in the medium stimulated the differentiation of shoot buds in embryogenic callus cultures. This effect of TDZ, noted for the first time in a monocotyledonous plant, was evident in terms of a significant increase in the frequency of shoot-bud formation in embryogenic callus cultures and occurred only at a high concentration of TDZ (11.25 µM). This requirement for a high concentration of TDZ for the induction of multiple shoots from cultured seedlings or shoot buds in an embryogenic callus culture of a monocot is contrary to its effect at low concentrations in dicotyledonous plants. Complete plantlets, derived either from somatic embryos or shoot buds, could be regenerated on hormone-free basal medium or on basal medium fortified with activated charcoal (0.5%). Following a gradual acclimatization in a culture room, these regenerants survived on transfer to soil and ultimately set seed.  相似文献   

17.
Optimization of in vitro plant regeneration and genetic transformation of apomictic species such as Dichanthium annulatum would enable transfer of desirable genes. Seven genotypes of this grass species were screened through mature seed explant for embryogenic callus induction, callus growth and quality (color and texture), and shoot induction. Genotype IG-1999, which produced highly embryogenic, rapidly growing good-quality callus capable of regenerating at a high frequency, was selected for transformation experiments. Using a binary vector (pCAMBIA1305), frequency of GUS expression was compared between two methods of transformation. Bombardment of embryogenic calli with gold particles coated with pCAMBIA1305 at a distance of 11 cm, pressure of 4 bars, and vacuum of 27 Hg passing through 100 muM mesh produced maximum GUS expression (23%). Agrobacterium infection was maximum at an optical density of 2.0 when cocultured under vacuum for 15 min and cocultivated for 3 days at 28 degrees C in constant dark on MS medium of pH 5.8 with 3 mg/l 2,4-D, and 400 muM acetosyringone. Among two binary vectors used for Agrobacterium-mediated transformation, pCAMBIA1301 showed higher frequency of GUS expression while pCAMBIA1305 recorded more of the GUS spots per callus. Supplementation of acetosyringone in the cocultivation medium was found indispensable for Agrobacterium-mediated transformation. Injuring the calli through gold particle bombardment before their cocultivation with Agrobacterium improved the transformation efficiency. Several transgenic plants were developed using the PIG method, while stable GUS-expressing calli were multiplied during selection on MS medium containing 250 mg/l cefotaxime and 50 mg/l hygromycin, incubated in constant dark. A highly significant difference was observed between two methods of transformation for both frequency of GUS expression and GUS spots per callus. PIG-mediated transformation resulted in higher GUS expression compared to the Agrobacterium method. These results demonstrate that Dichanthium annulatum is amenable to Agrobacterium-mediated genetic transformation using a binary vector.  相似文献   

18.
Callus cultures were established from seedling explants of Pergularia daemia (Forsk) Chiov on Murashige and Skoog (MS) medium supplemented with different concentrations of auxins. Optimal callus developed from leaf explants on MS medium supplemented with 2,4-D (2 mg l?1) + 2iP (0.1 mg l?1), was used for morphogenesis. Adventitious shoots were regenerated (70%) from the calli on MS medium supplemented with NAA (0.1 mg l?1)+ BAP (2 mg l?1). Individual shoots were rooted on half strength MS medium supplemented with 0.1 mg l?1 IBA. Plantlets with well developed roots were successfully transferred to soil and 50% of the transferred plants survived.  相似文献   

19.
We investigated the optimal levels of growth regulators, culture media, and pH on callus growth and organogenesis of in-vitro cultured ‘Kyoho’ grapes. Calli were induced by culturing leaf blades on an MS basal medium supplemented with 1 mg/IL BA and 0.01 mg/L 2,4-D. In addition, calli originating from the exocarp and mesocarp of grape fruits devel-oped on MS media supplemented with 0.1 mg/L IAA, NAA, or 2,4-D, or with 0.2 mg/L BA. In testing the potential for plant regeneration from shoot tips on various media, we found that the Nitsch medium, with I mg/L BA, was optimal for caulogenesis. The type of shoot development depended on the pH of the medium, with vigorous multiple-shoot devel-opment occurring at pH 6.0, and single shoots forming at pH 5.0. Finally, we were able to obtain rooted seedlings from the regenerated shoots that had been cultured on 1/4-strength Nitsch medium supplemented with 0.03 mg/L NAA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号