首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.  相似文献   

2.
孵化温度所驱动的爬行动物的表型变异是生理生态学研究的热点。本研究以王锦蛇(Elaphe carinata)为实验动物,检验了24℃和28℃孵化温度对王锦蛇胚胎代谢速率、孵化过程中的卵重量、孵出幼体代谢和行为的影响。研究结果显示:卵重和胚胎的呼吸代谢均与孵化时间呈正相关;28℃下胚胎代谢速率大于24℃;幼蛇孵出15 d内体重随着生长时间的延长而减小,24℃孵出幼体的代谢速率大于28℃孵出幼体,两温度下孵出幼体的呼吸代谢速率和生长时间无显著关系;28℃孵出幼体的疾游速和吐信频次均大于24℃;两孵化温度孵出幼体的选择体温无显著差异,但在消耗完体内的剩余卵黄后28℃孵出幼体有60%的个体摄食,而24℃孵出幼体无摄食个体。总体而言,王锦蛇28℃孵出幼体适合度优于24℃孵出幼体。  相似文献   

3.
The phenotypes of hatchling reptiles are known to be affected by the thermal environments they experience during incubation, but the evolutionary and ecological significance of this phenotypic plasticity remains unclear. Crucial issues include: (i) the magnitude of effects elicited by thermal regimes in natural nests (as opposed to constant-temperature incubation); (ii) the persistence of these effects during ontogeny; and (iii) the consistency of these effects across different test conditions (does the thermal regime during embryogenesis simply shift the hatchling's thermal optimum for performance, or actually modify overall performance ability regardless of temperature?). We examined these questions by incubating eggs of scincid lizards (Bassiana duperreyi) from montane southeastern Australia, under two fluctuating-temperature regimes that simulated ‘cold’ and ‘hot’ natural nests. These thermal regimes substantially modified hatchling morphology (mass, body length, tail length, and the relationship between these variables), locomotor performance (running speeds over distances of 25 cm and lm), anti-predator ‘tactics’ and survival rates. The differences in locomotor performance persisted throughout the 20 weeks of our experiment. Lizards that emerged after ‘hot’ incubation were faster runners than their ‘cold’-incubated siblings under all thermal conditions that we tested. Thus, incubation temperatures modified overall locomotor ability, with only a minor effect on the set-point for optimum performance. The magnitude, persistence and consistency of these incubation-induced phenotypic modifications suggest that they may play an important role in evolutionary and ecological processes within lizard populations.  相似文献   

4.
In an experiment repeated for two separate years, incubation temperature was found to affect the body size and swimming performance of hatchling green turtles (Chelonia mydas). In the first year, hatchlings from eggs incubated at 26°C were larger in size than hatchlings from 28 and 30°C, whilst in the second year hatchlings from 25.5°C were similar in size to hatchings from 30°C. Clutch of origin influenced the size of hatchlings at all incubation temperatures even when differences in egg size were taken into account. In laboratory measurements of swimming performance, in seawater at 28°C, hatchlings from eggs incubated at 25.5 and 26°C had a lower stroke rate frequency and lower force output than hatchlings from 28 and 30°C. These differences appeared to be caused by the muscles of hatchlings from cooler temperatures fatiguing at a faster rate. Clutch of origin did not influence swimming performance. This finding that hatchling males incubated at lower temperature had reduced swimming ability may affect their survival whilst running the gauntlet of predators in shallow near-shore waters, prior to reaching the relative safety of the open sea.  相似文献   

5.
Abstract Many ectothermic animals are subject to fluctuating environmental temperatures during incubation as well as post‐birth. Numerous studies examined the effects of incubation temperature or ambient temperature on various aspects of offspring phenotype. We investigated whether incubation temperature and ambient temperature have an interactive effect on offspring performance. Our study animal, the ectothermic vertebrate Lampropholis delicata (common garden skink; De Vis 1888), experiences fluctuating environmental temperatures caused by differential invasion of an exotic plant Vinca major (blue periwinkle). In the laboratory, eggs from wild‐caught females were assigned to different incubation temperatures that mimicked variation in natural nests. The feeding performance and digestion time of each hatchling was tested at ambient temperatures that represented environments invaded to different degrees by periwinkle. Incubation and ambient temperature interacted to affect a lizard's mobility, the time that it took to capture, subdue and handle a prey, and the number of handling ‘errors’ that it made while foraging. For a number of these characteristics, incubation‐induced changes to a lizard's mass significantly affected this relationship. Irrespective of size, no interaction effect was found for digestion time: lizards digested food faster at warmer temperatures, regardless of incubation temperature. Thus, temperatures experienced during incubation may alter an animal's phenotype so that the surrounding thermal environment differentially affects aspects of feeding performance. Our results also demonstrate that incubation environment can induce changes to morphology and behaviour that carry over into a lizard's early life, and that in some cases these differences in phenotype interact to affect performance. We suggest that the immediate removal of exotic plants as part of a weed control strategy could have important implications for the foraging performance, and presumably fitness, of ectothermic animals.  相似文献   

6.
The developmental trajectory of an organism is influenced by the interaction between its genes and the environment in which it develops. For example, the phenotypic traits of a hatchling reptile can be influenced by the organism's genotype, by incubation temperature, and by genetically coded norms of reaction for thermally labile traits. The evolution of parthenogenesis provides a unique opportunity to explore such effects: a hybrid origin of this trait in vertebrates modifies important aspects of the genotype (e.g., heterozygosity, polyploidy) and may thus impact not only on the phenotype generally, but also on the ways in which incubation temperature affects expression of the phenotype. The scarcity of vertebrate parthenogenesis has been attributed to developmental disruptions, but previous work has rarely considered reaction norms of embryogenesis in this respect. We used closely related sexual and asexual races of the Australian gecko Heteronotia binoei, which include those with multiple origins of parthenogenesis, to explore the ways in which reproductive modes (sexual, asexual), incubation temperatures (24, 27, and 30 degrees C), and the interaction between these factors affected hatchling phenotypes. The hatchling traits we considered included incubation period, incidence of deformities, hatchling survivorship, body size and shape, scalation (including fluctuating asymmetry), locomotor performance, and growth rate. Developmental success was slightly reduced (higher proportion of abnormal offspring) in parthenogenetic lineages although there was no major difference in hatching success. Incubation temperature affected a suite of traits including incubation period, tail length, body mass relative to egg mass, labial scale counts, running speed, growth rate, and hatchling survival. Our data also reveal an interaction between reproductive modes and thermal regimes, with the phenotypic traits of parthenogenetic lizards less sensitive to incubation temperature than was the case for their sexual relatives. Thus, the evolution of asexual reproduction in this species complex has modified both mean hatchling viability and the norms of reaction linking hatchling phenotypes to incubation temperature. Discussions on the reasons why parthenogenetic organisms are scarce in nature should take into account interactive effects such as these; future work could usefully try to tease apart the roles of parthenogenesis, its hybrid origin (and thus effects on ploidy and heterozygosity, etc.), and clonal selection in generating these divergent embryonic responses.  相似文献   

7.
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

8.
Wang L  Du W G  Shen J W  Zhu L J 《农业工程》2010,30(2):81-84
Freshly-laid eggs of the Chinese three-keeled pond turtle (Chinemys reevesii) from captive cohorts in Hunan, Shanghai and Jiangxi were incubated at four constant temperatures of 24, 26, 28 and 30 °C to assess the effects of incubation temperature and cohort origin on incubation duration and hatchling phenotypes. Eggs from the three cohorts differed in size and shape. Egg mass and width were greatest in the Hunan cohort, smallest in the Jiangxi cohort, with the Shanghai cohort in between. Incubation duration decreased with increasing temperature and differed among the cohorts, with longer incubation duration for eggs from the Jiangxi cohort than those from the Hunan or Shanghai cohorts. Incubation temperatures significantly affected hatchling size and hatchlings from 30 °C were smaller than those from the lower temperatures in terms of carapace size and body mass. When incubated at a common temperature, hatchlings from the Hunan and Shanghai cohorts were larger than those from the Jiangxi cohort. The swimming capacity of hatchlings was affected by incubation temperature, but did not differ among the cohorts. The characteristics of eggs and hatchlings were similar among the Hunan and Shanghai cohorts, but they differed significantly from the Jiangxi cohort.  相似文献   

9.
Offspring sex ratio is an important demographic parameter and, given its determination by incubation temperature in sea turtles, might be a key factor for their conservation under climate warming. An appealing approach to estimate hatchling sex ratios is to measure sand temperatures at nest depth and deduce hatchling sex ratios from a beforehand-established relationship of hatchling sex ratio and sand temperature. Such estimates will only be accurate though if metabolic heat produced by the embryos is considered. Judging whether metabolic heating has a potential effect on hatchling sex ratios without actually measuring temperature within clutches would greatly facilitate monitoring protocols. We tested for a relationship between the amount of metabolic heating and the number of developed embryos as well as clutch size in the largest known loggerhead sea turtle (Caretta caretta) population of the Mediterranean on Zakynthos (Greece). Temperatures were measured within 20 nests as well as at a reference site in the sand at nest depth. Metabolic heating was detected, but only during the last third of the incubation period did nests heat up considerably (1.6 °C on average) above the temperature of the surrounding sand. During the middle third of incubation, when sex is determined, the amount of metabolic heating was negligible. The amount of metabolic heating during the last third of the incubation duration was significantly correlated to the number of offspring developed to at least about 75% of incubation duration. This factor explained nearly 50% of variation in metabolic heating. Metabolic heating was also significantly correlated to clutch size. Given that clutch size within the Mediterranean is largest in Zakynthos loggerheads, we conclude that metabolic heating can be ignored in the estimate of hatchling sex ratios in Mediterranean loggerhead populations. These results thus provide the basis for a feasible monitoring of hatchling sex ratios in the loggerhead sea turtle in the Mediterranean.  相似文献   

10.
Studies examining the effects of incubation temperature fluctuation on the phenotype of hatchling reptiles have shown species variation. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of hatchling Chinese skinks (Plestiodon chinensis), we incubated eggs produced by 20 females under five thermal regimes (treatments). Eggs in three treatments were incubated in three incubators, one set constant at 27 °C and two ramp-programmed at 27±3 °C and 27±5 °C on a cycle of 12 h (+) and 12 h (−). The remaining eggs were incubated in two chambers: one inside a room where temperatures varied from 23.0 to 31.1 °C, with a mean of 27.0 °C; the other outside the room where temperatures varied from 20.2 to 35.3 °C, with a mean of 26.1 °C. We found that: (1) for eggs at a given embryonic stage at ovipositon, the mean rather than the variance of incubation temperatures determined the length of incubation; (2) most (egg mass, embryonic stage at oviposition, incubation length and all examined hatchling traits except tail length and locomotor performance) of the examined variables were affected by clutch; and (3) body mass was the only hatchling trait that differed among the five treatments, but the differences were tiny. These findings suggest that incubation temperature fluctuation has no direct role in influencing incubation length and hatchling phenotype in P. chinensis.  相似文献   

11.
How fluctuating temperatures influence reptilian embryos and hatchlings has attracted increasing scientific attention, but is poorly known. We conducted an incubation experiment with a factorial design of two mean temperatures (24 vs. 28 degrees C) and three diel thermal fluctuations (0, +/-3, +/-6 degrees C) to determine the effects of diel thermal fluctuations and mean temperature on incubation duration and hatchling phenotypes. Both diel thermal fluctuations and mean temperature significantly affected incubation duration, but not hatching success. Incubation duration increased with increasing temperature fluctuations at a mean temperature of 24 degrees C, but not at a mean temperature of 28 degrees C. The significant interaction between diel thermal fluctuations and mean temperature on hatchling morphology indicated that the effect of thermal fluctuations depended on the mean temperature. Hatchling mass differed significantly between 24+/-6 and 28+/-6 degrees C, but not between the two constant temperatures or the temperatures with +/-3 degrees C fluctuations. At a mean temperature of 24 degrees C, the effect of thermal fluctuations on hatchling size was marginally significant, with relatively large hatchlings at the constant temperature; at a mean temperature of 28 degrees C, thermal fluctuations had no impact on hatchling size. The locomotor performances were significantly affected by mean temperature rather than diel thermal fluctuations. Therefore, diel thermal fluctuations around a given mean temperature do not affect hatchling phenotypes in a relatively large magnitude, but the influence of diel thermal fluctuations may differ with changing mean temperatures.  相似文献   

12.
Ji X  Gao JF  Han J 《Zoological science》2007,24(4):384-390
Most studies on egg incubation in reptiles have relied on constant temperature incubation in the laboratory rather than on simulations of thermal regimes in natural nests. The thermal effects on embryos in constant-temperature studies often do not realistically reflect what occurs in nature. Recent studies have increasingly recognized the importance of simulating natural nest temperatures rather than applying constant-temperature regimes. We incubated Bungarus multicintus eggs under three constant and one fluctuating-temperature regimes to evaluate the effects of constant versus fluctuating incubation temperatures on hatching success and hatchling phenotypes. Hatching success did not differ among the four treatments, and incubation temperature did not affect the sexual phenotype of hatchlings. Incubation length decreased as incubation temperature increased, but eggs incubated at fluctuating temperatures did not differ from eggs incubated at constant temperatures with approximately the same mean in incubation length. Of the hatchling phenotypes examined, residual yolk, fat bodies and locomotor performance were more likely affected by incubation temperature. The maximal locomotor speed was fastest in the fluctuating-temperature and 30 degrees C treatments and slowest in the 24 degrees C treatment, with the 27 degrees C treatment in between. The maximal locomotor length was longest in the fluctuating-temperature treatment and shortest in the 24 degrees C and 27 degrees C treatments, with the 30 degrees C treatment in between. Our results show that fluctuating incubation temperatures do not influence hatching success and hatchling size and morphology any differently than constant temperatures with approximately the same mean, but have a positive effect on locomotor performance of hatchlings.  相似文献   

13.
Varied egg incubation temperatures can result in immediate effects on the phenotype of reptiles, and also latent effects that can augment or contradict effects evident at egg hatching. I examined the effects of incubation temperature on embryonic development, hatching morphology, and subsequent growth in multiple populations of the lizard Anolis carolinensis. Eggs from wild-caught females in four populations were incubated at up to three temperatures, 23.5, 27, and 30 degrees C. Measures of body size were collected immediately after hatching and weekly thereafter, while juveniles were maintained in a common laboratory environment for 8 weeks. Cooler incubation temperatures resulted in longer incubation periods but did not affect conversion of egg mass to hatchling mass. Incubation temperature did not affect hatchling mass or snout vent length (SVL), but did affect subsequent growth in both mass and SVL, which varied by population. Cooler incubation temperatures generally resulted in greater overall growth over 8 weeks of housing all juveniles in a common environment. In A. carolinensis, egg incubation temperature had latent effects on juvenile growth despite the absence of any detected immediate effects on hatchling phenotype. Therefore, the total impact and evolutionary importance of developmental environment should not be assessed or assumed based solely on the phenotype of reptiles at birth or hatching.  相似文献   

14.
Eggs of wall lizards (Podarcis muralis) were incubated at three temperatures approaching the upper limit of viability for embryonic development in this species (26, 29, and 32 degrees C) to assess the influence of temperature on various aspects of hatchling phenotype likely affecting fitness. The thermal environment affected size and several morphometric characteristics of hatchling lizards. Hatchlings from eggs incubated at 32 degrees C were smaller (snout-vent length, SVL) than those from 26 and 29 degrees C and had smaller mass residuals (from the regression on SVL) as well as shorter tail, head, and femur relative to SVL. Variation in the level of fluctuating asymmetry in meristic and morphometric traits associated with incubation temperatures was quite high but not clearly consistent with the prediction that environmental stress associated with the highest incubation temperatures might produce the highest level of asymmetry. When tested for locomotor capacity in trials developed at body temperatures of 32 and 35 degrees C, hatchlings from the 32 degrees C incubation treatment exhibited the worst performance in any aspect considered (burst speed, maximal length, and number of stops in the complete run). Repeated measures ANCOVAs (with initial egg mass as covariate) of snout-vent length and mass of lizards at days 0 and 20 revealed significant effects of incubation temperature only for mass, being again the hatchlings from eggs incubated at 32 degrees C those exhibiting the smallest final size. All together, our results evidenced a pervasive effect of thermal regime during incubation (and hence of nest site selection) on hatchling phenotypes. However, incubation temperature does not affect hatchling phenotypes in a continuous way; for most of the analysed traits a critical threshold seems to exist between 29 and 32 degrees C, so that hatchlings incubated at 32 degrees C exhibited major detrimental effects. J. Exp. Zool. 286:422-433, 2000.  相似文献   

15.
Incubation temperatures profoundly affect many phenotypic traits of squamate reptiles, and mean selected body temperatures of such animals also are plastic in response to environmental factors. Plausibly, then, incubation temperatures might affect hatchling thermoregulation, either via adaptation (i.e., populations that historically experience different nest conditions, also will diverge in hatchling thermoregulatory behaviour) or phenotypic plasticity (incubation temperatures directly modify hatchling behaviours). We tested this hypothesis with a montane scincid lizard (Bassiana duperreyi), using thermal-imaging methods to quantify temperatures (of both head and body) selected by hatchling lizards. The young lizards kept their heads cooler than their bodies, but mean selected temperatures did not differ among hatchlings from three populations with differing thermal regimes in natural nests, nor were they affected by thermal conditions during incubation. The conservatism of mean selected temperatures stands in strong contrast to the lability of many other phenotypic traits in response to incubation temperatures in this species.  相似文献   

16.
Geographic variation in offspring size can be viewed as an adaptive response to local environmental conditions, but the causes of such variation remain unclear. Here, we compared the size and composition of eggs laid by female Chinese skinks (Plestiodon chinensis) from six geographically distinct populations in southeastern China to evaluate geographic variation in hatchling size. We also incubated eggs from these six populations at three constant temperatures (24, 28 and 32 °C) to evaluate the combined effects of incubation temperature and population source on hatchling size. Egg mass and composition varied among populations, and interpopulation differences in yolk dry mass and energy content were still evident after accounting for egg mass. Population mean egg mass and thus hatchling mass were greater in the colder localities. Females from three northern populations increased offspring size by laying larger eggs relative to their own size. Females from an inland population in Rongjiang could increase offspring size by investing relatively more dry materials and thus more energy into individual eggs without enlarging the size of their eggs. The degree of embryonic development at oviposition was almost the same across the six populations, so was the rate of embryonic development and thus incubation length at any given temperature. Both incubation temperature and population source affected hatchling traits examined, but the relative importance of these two factors varied between traits. Our data show that in P. chinensis hatchling traits reflecting overall body size (body mass, snout‐vent length and tail length) are more profoundly affected by population source. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 283–296.  相似文献   

17.
Egg masses of oceanic squid accidently collected in the wild have been observed only from a few spawning events in aquaria, and as a consequence, the study of their embryos and hatchlings is very limited. Here, we used in vitro fertilization techniques to understand the abiotic factors that influenced egg development and hatchling performance of the ommastrephid squid Illex coindetii from the Mediterranean Sea. Egg and hatchling sizes of these ommastrephids are close to the minimum for cephalopod species, and therefore, short embryonic developmental periods were expected under a Mediterranean temperature regime. Low incubation densities and the use of antibiotics in the incubation medium resulted in relatively high survival rates to hatchling. Hatching time was inversely proportional to incubation temperature and ranged from 5 to 11 days at 21 °C and 13 °C, respectively. The addition of oviducal jelly to the eggs immediately after fertilization, followed by another addition at the beginning of organogenesis, resulted in better chorionic expansion, with an increase in egg diameter, delayed hatching and higher hatchling weight, which suggests a better use of yolk reserves. Larger hatchlings in length and weight also tended to be produced at low temperature, probably also due to better yolk absorption. As this species spawns all year round, size differences between summer and winter hatchlings may be suspected. In vitro fertilization techniques used in the laboratory proved to be useful in shedding some light on the early life of this oceanic squid. Further research is needed to elaborate on tests to predict gamete quality and to develop methods to avoid premature hatching.  相似文献   

18.
The effects of climate change on populations are complex and difficult to predict, and can result in mismatches between interdependent organisms or between organisms and their environment. Reptiles with temperature-dependent sex determination may be able to compensate for potential skews in offspring sex ratio caused by climate change by selecting cooler (i.e., shadier) nest sites. Although changing nest location may prevent sex ratio skews, it may also affect thermally sensitive performance traits in offspring. I tested righting, sprinting, and swimming performance in hatchling painted turtles (Chrysemys picta), produced by female turtles from five populations across the species’ geographic range, nesting in a common-garden environment. I found that speed of hatchling performance was faster in hatchlings whose mothers originated from warmer climates, and that nests with higher mean daily variation in incubation temperature produced faster hatchlings. These results suggest that the increased temperatures predicted by climate change models could result in hatchling turtles that are faster at sprinting and swimming; however, it is not yet known how these performance measures translate into fitness.  相似文献   

19.
Global temperatures have risen over the last century, and are forecast to continue rising. Ectotherms may be particularly sensitive to changes in thermal regimes, and tropical ectotherms are more likely than temperate species to be influenced by changes in environmental temperature, because they may have evolved narrow thermal tolerances. Keelback snakes (Tropidonophis mairii) are tropical, oviparous reptiles. To quantify the effects of temperature on the morphology and physiology of hatchling keelbacks, clutches laid by wild-caught females were split and incubated at three temperatures, reflecting the average minimum, overall average and average maximum temperatures recorded at our study site. Upon hatching, the performance of neonates was examined at all three incubation temperatures in a randomized order over consecutive days. Hatchlings from the ‘hot’ treatment had slower burst swim speeds and swam fewer laps than hatchlings from the cooler incubation temperatures in all three test temperatures, indicating a low thermal optimum for incubation of this tropical species. There were no significant interactions between test temperature and incubation temperature across performance variables, suggesting phenotypic differences caused by incubation temperature did not acclimate this species to post-hatching conditions. Thus, keelback embryos appear evolutionarily adapted to development at cooler temperatures (relative to what is available in their habitat). The considerable reduction in hatchling viability and performance associated with a 3.5 °C increase in incubation temperature, suggests climate change may have significant population-level effects on this species. However, the offspring of three mothers exposed to the hottest incubation temperature were apparently resilient to high temperature, suggesting that this species may respond to selection imposed by thermal regime.  相似文献   

20.
Incubation temperature and the amount of water taken up by eggs from the substrate during incubation affects hatchling size and morphology in many oviparous reptiles. The Brisbane river turtle Emydura signata lays hard-shelled eggs and hatchling mass was unaffected by the amount of water gained or lost during incubation. Constant temperature incubation of eggs at 24 °C, 26 °C, 28 °C and 31 °C had no effect on hatchling mass, yolk-free hatchling mass, residual yolk mass, carapace length, carapace width, plastron length or plastron width. However, hatchlings incubated at 26 °C and 28 °C had wider heads than hatchlings incubated at 24 °C and 31 °C. Incubation period varied inversely with incubation temperature, while the rate of increase in oxygen consumption during the first part of incubation and the peak rate of oxygen consumption varied directly with incubation temperature. The total amount of oxygen consumed during development and hatchling production cost was significantly greater at 24 °C than at 26 °C, 28 °C and 31 °C. Hatchling mass and dimensions and total embryonic energy expenditure was directly proportional to initial egg mass. Accepted: 18 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号