首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleomorph genomes: structure, function, origin and evolution   总被引:4,自引:0,他引:4  
The cryptomonads and chlorarachniophytes are two unicellular algal lineages with complex cellular structures and fascinating evolutionary histories. Both groups acquired their photosynthetic abilities through the assimilation of eukaryotic endosymbionts. As a result, they possess two distinct cytosolic compartments and four genomes--two nuclear genomes, an endosymbiont-derived plastid genome and a mitochondrial genome derived from the host cell. Like mitochondrial and plastid genomes, the genome of the endosymbiont nucleus, or 'nucleomorph', of cryptomonad and chlorarachniophyte cells has been greatly reduced through the combined effects of gene loss and intracellular gene transfer. This article focuses on the structure, function, origin and evolution of cryptomonad and chlorarachniophyte nucleomorph genomes in light of recent comparisons of genome sequence data from both groups. It is now possible to speculate on the reasons that nucleomorphs persist in cryptomonads and chlorarachniophytes but have been lost in all other algae with plastids of secondary endosymbiotic origin.  相似文献   

2.
3.
Hua J  Smith DR  Borza T  Lee RW 《Protist》2012,163(1):105-115
Levels of nucleotide substitution at silent sites in organelle versus nuclear DNAs have been used to estimate relative mutation rates among these compartments and explain lineage-specific features of genome evolution. Synonymous substitution divergence values in animals suggest that the rate of mutation in the mitochondrial DNA is 10-50 times higher than that of the nuclear DNA, whereas overall data for most seed plants support relative mutation rates in mitochondrial, plastid, and nuclear DNAs of 1:3:10. Little is known about relative mutation rates in green algae, as substitution rate data is limited to only the mitochondrial and nuclear genomes of the chlorophyte Chlamydomonas. Here, we measure silent-site substitution rates in the plastid DNA of Chlamydomonas and the three genetic compartments of the streptophyte green alga Mesostigma. In contrast to the situation in animals and land plants, our results support similar relative mutation rates among the three genetic compartments of both Chlamydomonas and Mesostigma. These data are discussed in relation to published intra-species genetic diversity data for the three genetic compartments of Chlamydomonas and are ultimately used to address contemporary hypotheses on the organelle genome evolution. To guide future work, we describe evolutionary divergence data of all publically available Mesostigma viride strains and identify, for the first time, three distinct lineages of Mesostigma.  相似文献   

4.
In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.  相似文献   

5.
We used a bi-organellar phylogenomic approach to address higher-order relationships in Pandanales, including the first molecular phylogenetic study of the panama-hat family, Cyclanthaceae. Our genus-level study of plastid and mitochondrial gene sets includes a comprehensive sampling of photosynthetic lineages across the order, and provides a framework for investigating clade ages, biogeographic hypotheses and organellar molecular evolution. Using multiple inference methods and both organellar genomes, we recovered mostly congruent and strongly supported relationships within and between families, including the placement of fully mycoheterotrophic Triuridaceae. Cyclanthaceae and Pandanaceae plastomes have slow substitution rates, contributing to weakly supported plastid-based relationships in Cyclanthaceae. While generally slowly evolving, mitochondrial genomes exhibit sporadic rate elevation across the order. However, we infer well-supported relationships even for slower evolving mitochondrial lineages in Cyclanthaceae. Clade age estimates across photosynthetic lineages are largely consistent with previous studies, are well correlated between the two organellar genomes (with slightly younger inferences from mitochondrial data), and support several biogeographic hypotheses. We show that rapidly evolving non-photosynthetic lineages may bias age estimates upwards at neighbouring photosynthetic nodes, even using a relaxed clock model. Finally, we uncovered new genome structural variants in photosynthetic taxa at plastid inverted repeat boundaries that show promise as interfamilial phylogenetic markers.  相似文献   

6.

Background

In conventional approaches to plastid and mitochondrial genome sequencing, the sequencing steps are performed separately; thus, plastid DNA (ptDNA) and mitochondrial DNA (mtDNA) should be prepared independently. However, it is difficult to extract pure ptDNA and mtDNA from plant tissue. Following the development of high-throughput sequencing technology, many researchers have attempted to obtain plastid genomes or mitochondrial genomes using high-throughput sequencing data from total DNA. Unfortunately, the huge datasets generated consume massive computing and storage resources and cost a great deal, and even more importantly, excessive pollution reads affect the accuracy of the assembly. Therefore, it is necessary to develop an effective method that can generate base sequences from plant tissue and that is suitable for all plant species. Here, we describe a highly effective, low-cost method for obtaining plastid and mitochondrial genomes simultaneously.

Results

First, we obtained high-quality DNA employing Partial Concentration Extraction. Second, we evaluated the purity of the DNA sample and determined the sequencing dataset size employing Vector Control Quantitative Analysis. Third, paired-end reads were obtained using a high-throughput sequencing platform. Fourth, we obtained scaffolds employing Two-step Assembly. Finally, we filled in gaps using specific methods and obtained complete plastid and mitochondrial genomes. To ensure the accuracy of plastid and mitochondrial genomes, we validated the assembly using PCR and Sanger sequencing. Using this method,we obtained complete plastid and mitochondrial genomes with lengths of 153,533 nt and 223,412 nt separately.

Conclusion

A simple method for extracting, evaluating, sequencing and assembling plastid and mitochondrial genomes was developed. This method has many advantages: it is timesaving, inexpensive and reproducible and produces high-quality sequence. Furthermore, this method can produce plastid and mitochondrial genomes simultaneously and be used for other plant species. Due to its simplicity and extensive applicability, this method will support research on plant cytoplasmic genomes.  相似文献   

7.
In recent years a consensus has emerged from molecular phylogenetic investigations favoring a common endosymbiotic ancestor for all chloroplasts. It is within this conceptual framework that most comparative analyses of eukaryotic biochemistry and genetics now are interpreted. One of the first and most influential sources of data leading to this consensus is the remarkable similarity in genome content among all major plastid lineages. Here we report statistical analyses of two sequence data sets, genes encoding ribosomal proteins and transfer RNAs, from representatives of the three primary plastid lineages and a mitochondrion. The latter almost certainly originated in an independent endosymbiotic association and serves as a control for similarity due to convergent evolution. When genes related to organelle‐specific function are factored out, plastid genomes appear to be no more similar to each other than they are to the mitochondrion. Total similarities in gene content, measured as deviations from the expectation from a process of random gene loss, are correlated with the extent of reduction in the two genomes compared. They do not appear to reflect putative evolutionary relationships among plastids. These analyses indicate that similarities in plastid genome content are better explained by convergent evolution due to constraint on gene loss than by a shared evolutionary history. A review of other data cited as support for a single plastid origin suggests that the alternative hypothesis of multiple origins is at least equally consistent in most cases.  相似文献   

8.
Buffalograss (Buchlo? dactyloides (Nutt.) Englem), a C4 turfgrass species, is native to the Great Plains region of North America. The evolutionary implications of buffalograss are unclear. Sequencing of rbcL and matK genes from plastid and the cob gene from mitochondrial genomes was examined to elucidate buffalo grass evolution. This study is the first to report sequencing of these genes from organelle genomes in the genus Buchlo?. Comparisons of sequence data from the mitochondrial and plastid genome revealed that all genotypes contained the same cytoplasmic origin. There were some rearrangements detected in mitochondrial genome. The buffalograss genome appears to have evolved through the rearrangements of convergent subgenomic domains. Combined analyses of plastid genes suggest that the evolutionary process in Buchlo? accessions studied was monophyletic rather than polyphyletic. However, since plastid and mitochondrial genomes are generally uniparentally inherited, the evolutionary history of these genomes may not reflect the evolutionary history of the organism, especially in a species in which out-crossing is common. The sequence information obtained from this study can be used as a genome-specific marker for investigation of the buffalograss polyploidy complex and testing of the mode of plastid and mitochondrial transmission in genus Buchlo?.  相似文献   

9.
Animal mitochondrial genomes   总被引:64,自引:1,他引:63       下载免费PDF全文
  相似文献   

10.
Polytomella is composed of colorless green algae closely related to Chlamydomonas reinhardtii. Species in the genus have been used in diverse fields of biological research, most recently to study mitochondrial function and mitochondrial genome evolution in the Chlorophyceae, but the phylogenetic relationship between the various available taxa has not yet been clarified and it is not known whether they also possess fragmented mitochondrial genomes, as reported for Polytomella parva. We therefore examined cox1 sequence from seven Polytomella taxa with the goal of establishing their phylogenetic relationships and relating this information to their mitochondrial DNA (mtDNA) fragmentation pattern. We found that the Polytomella isolates examined fall into three distinct lineages, two of which possess fragmented mitochondrial genomes. The third and earliest branching lineage, represented by Polytomella capuana, appears to possess an intact mtDNA. In addition, there is evidence for variation in both size and number of mtDNA fragments between various Polytomella isolates, even within the same lineage. The considerable amount of sequence divergence between lineages seems to correlate with the geographic origin of the strains, leading us to believe that greater amounts of sequence divergence could be uncovered by a broader sampling of Polytomella.  相似文献   

11.
The unusual mode of mitochondrial DNA inheritance, with two separate: maternal (F) and paternal (M) lineages, gives unique opportunities to study the evolution of the mitochondrial genome. This system was first discovered in the marine mussels Mytilus. The three related species: Mytilus edulis, Mytilus galloprovincialis and Mytilus trossulus form a complex in which the divergence of M and F lineages pre-dates the speciation. The complete mitochondrial genomes of both lineages were known for all species except Pacific M. trossulus. Here we report, for the first time, the complete sequences of both mitochondrial genomes of Pacific M. trossulus, filling the gap. While the reported M and F genomes are highly diverged (26%), they have similar organisation. The only difference is the translocation of one tRNA gene into the long, mosaic control region of the F genome. Consistent presence of an ORF which most likely represents the atp8 gene was confirmed in both genomes. The predicted protein has characteristics expected of the functional atp8 even though the M and F versions are markedly different in length. Comparative analysis involving all three species led to the conclusion that the cause of a faster evolution of atp8 and Mytilus mtDNA in general is most likely the Compensation-Draft Feedback process coupled with relatively relaxed selection in the M lineage. Thus, we postulate that the adaptive changes may have played a role in the emergence of highly diverged, barely recognizable atp8 in Mytilus mussels.  相似文献   

12.
Date palm is a very important crop in western Asia and northern Africa, and it is the oldest domesticated fruit tree with archaeological records dating back 5000 years. The huge economic value of this crop has generated considerable interest in breeding programs to enhance production of dates. One of the major limitations of these efforts is the uncertainty regarding the number of date palm cultivars, which are currently based on fruit shape, size, color, and taste. Whole mitochondrial and plastid genome sequences were utilized to examine single nucleotide polymorphisms (SNPs) of date palms to evaluate the efficacy of this approach for molecular characterization of cultivars. Mitochondrial and plastid genomes of nine Saudi Arabian cultivars were sequenced. For each species about 60 million 100 bp paired-end reads were generated from total genomic DNA using the Illumina HiSeq 2000 platform. For each cultivar, sequences were aligned separately to the published date palm plastid and mitochondrial reference genomes, and SNPs were identified. The results identified cultivar-specific SNPs for eight of the nine cultivars. Two previous SNP analyses of mitochondrial and plastid genomes identified substantial intra-cultivar ( = intra-varietal) polymorphisms in organellar genomes but these studies did not properly take into account the fact that nearly half of the plastid genome has been integrated into the mitochondrial genome. Filtering all sequencing reads that mapped to both organellar genomes nearly eliminated mitochondrial heteroplasmy but all plastid SNPs remained heteroplasmic. This investigation provides valuable insights into how to deal with interorganellar DNA transfer in performing SNP analyses from total genomic DNA. The results confirm recent suggestions that plastid heteroplasmy is much more common than previously thought. Finally, low levels of sequence variation in plastid and mitochondrial genomes argue for using nuclear SNPs for molecular characterization of date palm cultivars.  相似文献   

13.
The replication of mitochondrial DNA (mtDNA) is not under strict control of the nucleus. Therefore, within-cell selection can favour mtDNA variants with a replication or survival advantage even if deleterious for the cell. Here, we consider how the balance between selection within and among cells is shifted in cancer cell lineages, and how this affects the somatic evolution of mitochondria. Cancer cell lineages are known to be prone to mitochondrial genetic erosion. Nevertheless, some cancer lineages are long lived and a few exceptional lineages even can survive their host because of horizontal transmission to other individuals. Recent work now shows that such transmissible cancer cell lineages occasionally secondarily recruit the mitochondrial genome of their host, which we propose as a means to replace genetically eroded mitochondrial genomes. Studying the dynamics of the horizontal exchange of mtDNA between somatic cells may provide important insight into the evolution of mitochondria during somatic growth and in mitochondrial diseases.  相似文献   

14.
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.  相似文献   

15.
Accumulating evidence for alternative gene orders demonstrates that vertebrate mitochondrial genomes are more evolutionarily dynamic than previously thought. Several lineages of parthenogenetic lizards contain large, tandem duplications that include rRNA, tRNA, and protein-coding genes, as well as the control region. Such duplications are hypothesized as intermediate stages in gene rearrangement, but the early stages of their evolution have not been previously studied. To better understand the evolutionary dynamics of duplicated segments of mitochondrial DNA, we sequenced 10 mitochondrial genomes from recently formed ( approximately 300,000 years ago) hybrid parthenogenetic geckos of the Heteronotia binoei complex and 1 from a sexual form. These genomes included some with an arrangement typical of vertebrates and others with tandem duplications varying in size from 5.7 to 9.4 kb, each with different gene contents and duplication endpoints. These results, together with phylogenetic analyses, indicate independent and frequent origins of the duplications. Small, direct repeats at the duplication endpoints imply slipped-strand error as a mechanism generating the duplications as opposed to a false initiation/termination of DNA replication mechanism that has been invoked to explain duplications in other lizard mitochondrial systems. Despite their recent origin, there is evidence for nonfunctionalization of genes due primarily to deletions, and the observed pattern of gene disruption supports the duplication-deletion model for rearrangement of mtDNA gene order. Conversely, the accumulation of mutations between these recent duplicates provides no evidence for gene conversion, as has been reported in some other systems. These results demonstrate that, despite their long-term stasis in gene content and arrangement in some lineages, vertebrate mitochondrial genomes can be evolutionary dynamic even at short timescales.  相似文献   

16.
The transfer and integration of tRNA genes from organellar genomes to the nuclear genome and between organellar genomes occur extensively in flowering plants. The routes of the genetic materials flowing from one genome to another are biased, limited largely by compatibility of DNA replication and repair systems differing among the organelles and nucleus. After thoroughly surveying the tRNA gene transfer among organellar genomes and the nuclear genome of a domesticated rice (Oryza sativa L. ssp. indica), we found that (i) 15 mitochondrial tRNA genes originate from the plastid; (ii) 43 and 80 nuclear tRNA genes are mitochondrion-like and plastid-like, respectively; and (iii) 32 nuclear tRNA genes have both mitochondrial and plastid counterparts. Besides the native (or genuine) tRNA gene sets, the nuclear genome contains organelle-like tRNA genes that make up a complete set of tRNA species capable of transferring all amino acids. More than 97% of these organelle-like nuclear tRNA genes flank organelle-like sequences over 20 bp. Nearly 40% of them colocalize with two or more other organelle-like tRNA genes. Twelve of the 15 plastid-like mitochondrial tRNA genes possess 5′- and 3′-flanking sequences over 20 bp, and they are highly similar to their plastid counterparts. Phylogenetic analyses of the migrated tRNA genes and their original copies suggest that intergenomic tRNA gene transfer is an ongoing process with noticeable discriminatory routes among genomes in flowering plants. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. David Guttman  相似文献   

17.
All extant green plants belong to 1 of 2 major lineages, commonly known as the Chlorophyta (most of the green algae) and the Streptophyta (land plants and their closest green algal relatives). The scaly green flagellate Mesostigma viride has an important place in the debate on the origin of green plants. However, there have been conflicting results from molecular systematics as to whether Mesostigma diverges before the Chlorophyta/Streptophyta split or is an early diverging flagellate member of the Streptophyta. Previous studies employed either a limited taxon sampling (plastid and mitochondrial genomes) or a small number of phylogenetically informative sites (single nuclear genes). Here, we use large data sets from the nuclear (125 proteins; 29,319 positions), mitochondrial (33 proteins; 6,622 positions), and plastid (50 proteins; 10,137 positions) genomes with an expanded taxon sampling (21, 13, and 28 species, respectively) to reevaluate the phylogenetic position of Mesostigma. Our study supports the placement of Mesostigma in the Streptophyta (as an early diverging lineage) and provides evidence that systematic biases have played a role in generating some of the previous conflicting results. Importantly, we demonstrate that using an increased taxon sampling as well as more realistic models of evolution allows increasing congruence among the nuclear, mitochondrial, and plastid data sets.  相似文献   

18.
Key Message

Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve.

Abstract

The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a?>?85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.

  相似文献   

19.
20.
Among land plants, mitochondrial and plastid group II introns occasionally encode proteins called maturases that are important for splicing. Angiosperm nuclear genomes also encode maturases that are targeted to the organelles, but it is not known whether nucleus-encoded maturases exist in other land plant lineages. To examine the evolutionary diversity and history of this essential gene family, we searched for maturase homologs in recently sequenced nuclear and mitochondrial genomes from diverse land plants. We found that maturase content in mitochondrial genomes is highly lineage specific, such that orthologous maturases are rarely shared among major land plant groups. The presence of numerous mitochondrial pseudogenes in the mitochondrial genomes of several species implies that the sporadic maturase distribution is due to frequent inactivation and eventual loss over time. We also identified multiple maturase paralogs in the nuclear genomes of the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens, and the representative angiosperm Vitis vinifera. Phylogenetic analyses of organelle- and nucleus-encoded maturases revealed that the nuclear maturase genes in angiosperms, lycophytes, and mosses arose by multiple shared and independent transfers of mitochondrial paralogs to the nuclear genome during land plant evolution. These findings indicate that plant mitochondrial maturases have experienced a surprisingly dynamic history due to a complex interaction of multiple evolutionary forces that affect the rates of maturase gain, retention, and loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号