首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
@Chromatin nanoscale architecture in live cells can be studied by Förster resonance energy transfer (FRET) between fluorescently labeled chromatin components, such as histones. A higher degree of nanoscale compaction is detected as a higher FRET level, since this corresponds to a higher degree of proximity between donor and acceptor molecules. However, in such a system, the stoichiometry of the donors and acceptors engaged in the FRET process is not well defined and, in principle, FRET variations could be caused by variations in the acceptor‐to‐donor ratio rather than distance. Here, to get a FRET level independent of the acceptor‐to‐donor ratio, we combine fluorescence lifetime imaging detection of FRET with a normalization of the FRET level to a pixel‐wise estimation of the acceptor‐to‐donor ratio. We use this method to study FRET between two DNA binding dyes staining the nuclei of live cells. We show that this acceptor‐to‐donor ratio corrected FRET imaging reveals variations of nanoscale compaction in different chromatin environments. As an application, we monitor the rearrangement of chromatin in response to laser‐induced microirradiation and reveal that DNA is rapidly decompacted, at the nanoscale, in response to DNA damage induction.   相似文献   

2.
《Biophysical journal》2022,121(21):4078-4090
DNA self-assembly has emerged as a powerful strategy for constructing complex nanostructures. While the mechanics of individual DNA strands have been studied extensively, the deformation behaviors and structural properties of self-assembled architectures are not well understood. This is partly due to the small dimensions and limited experimental methods available. DNA crystals are macroscopic crystalline structures assembled from nanoscale motifs via sticky-end association. The large DNA constructs may thus be an ideal platform to study structural mechanics. Here, we investigate the fundamental mechanical properties and behaviors of ligated DNA crystals made of tensegrity triangular motifs. We perform coarse-grained molecular dynamics simulations and confirm the results with nanoindentation experiments using atomic force microscopy. We observe various deformation modes, including untension, linear elasticity, duplex dissociation, and single-stranded component stretch. We find that the mechanical properties of a DNA architecture are correlated with those of its components. However, the structure shows complex behaviors which may not be predicted by components alone and the architectural design must be considered.  相似文献   

3.
DNA Nano-Gears     
DNA is a nanoscale material for programmable self-assembly, using the selective affinity of pairs of DNA strands to form DNA nanostructures. Self-assembly is the spontaneous self-ordering of substructures into superstructures which driven by the selective affinity of the substructures. DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. This programmability renders the scaffolding have the patterning required for fabricating complex devices made of these components. We present various strategies to assemble DNA based gears for application in nano-machines, nano-motors and nano-devices. In this paper, some fundamental parts of mechanical nano-machines with DNA blocks are designed. These kinds of nanostructures, nano-gears, are fundamental for the development of future useful molecular-level devices.  相似文献   

4.
The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks.  相似文献   

5.
Single molecule force spectroscopy is a powerful approach to probe the structure, conformational changes, and kinetic properties of biological and synthetic macromolecules. However, common approaches to apply forces to biomolecules require expensive and cumbersome equipment and relatively large probes such as beads or cantilevers, which limits their use for many environments and makes integrating with other methods challenging. Furthermore, existing methods have key limitations such as an inability to apply compressive forces on single molecules. We report a nanoscale DNA force spectrometer (nDFS), which is based on a DNA origami hinge with tunable mechanical and dynamic properties. The angular free energy landscape of the nDFS can be engineered across a wide range through substitution of less than 5% of the strand components. We further incorporate a removable strut that enables reversible toggling of the nDFS between open and closed states to allow for actuated application of tensile and compressive forces. We demonstrate the ability to apply compressive forces by inducing a large bend in a 249bp DNA molecule, and tensile forces by inducing DNA unwrapping of a nucleosome sample. These results establish a versatile tool for force spectroscopy and robust methods for designing nanoscale mechanical devices with tunable force application.  相似文献   

6.
As a vital part of modern nanotechnology, nanofabrication aims to develop nanoscale components and nanomaterials in large quantities at relatively low cost. The promising strategy is the bottom-up self-assembly techniques of chemical assembly and molecular recognition to bring together individual atoms, molecules, or supramolecular building blocks to form useful constructs. The DNA-DNA self-assembly seems to be the key point regulating the polymer composites formation. We address the mixture of a flexible polymer with short double-strand DNA fragments, where the persistence length is in comparable with the contour length of the molecule. We investigate the conditions affecting the orientational order formation of short double-strand DNA fragments, immersed in the flexible polymer. It is shown that short double-strand DNA fragments exhibit the formation of a liquid crystalline ordered phase, in dependence on the value of the Flory–Huggins parameter, aspect ratio , and the attraction energy (Mamasakhlisov et al., 2009; Todd et al., 2008) of the double strand DNA molecules and volume fraction of polymer.  相似文献   

7.
DNA origami shows tremendous promise as templates for the assembly of nano‐components and detection of molecular recognition events. So far, the method of choice for evaluating these structures has been atomic force microscopy (AFM), a powerful tool for imaging nanoscale objects. In most cases, tethered targets on DNA origami have proven to be highly effective samples for investigation. Still, while maximal assembly of the nanostructures might benefit from the greatest flexibility in the tether, AFM imaging requires a sufficient stability of the adsorbed components. The balance between the tether flexibility and sample stability is a major, poorly understood, concern in such studies. Here, we investigated the dependence of the tethering length on molecular capture events monitored by AFM. In our experiments, single biotin molecules were attached to DNA origami templates with various linker lengths of thymidine nucleotides, and their interaction with streptavidin was observed with AFM. Our results show that the streptavidin‐biotin complexes are easily detected with short tethered lengths, and that their morphological features clearly change with the tethering length. We identify the functionally useful tether lengths for these investigations, which are also expected to prove useful in the construction and further application of DNA origami in bio‐nanotechnology studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
DNA origami is a robust method for the fabrication of nanoscale 2D and 3D objects with complex features and geometries. The process of DNA origami folding has been recently studied, however quantitative understanding of it is still elusive. Here, we describe a systematic quantification of the assembly process of DNA nanostructures, focusing on the heterotypic DNA junction—in which arms are unequal—as their basic building block. Using bulk fluorescence studies we tracked this process and identified multiple levels of cooperativity from the arms in a single junction to neighboring junctions in a large DNA origami object, demonstrating that cooperativity is a central underlying mechanism in the process of DNA nanostructure assembly. We show that the assembly of junctions in which the arms are consecutively ordered is more efficient than junctions with randomly-ordered components, with the latter showing assembly through several alternative trajectories as a potential mechanism explaining the lower efficiency. This highlights consecutiveness as a new design consideration that could be implemented in DNA nanotechnology CAD tools to produce more efficient and high-yield designs. Altogether, our experimental findings allowed us to devise a quantitative, cooperativity-based heuristic model for the assembly of DNA nanostructures, which is highly consistent with experimental observations.  相似文献   

9.
Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.  相似文献   

10.
Biosensors for DNA sequence detection   总被引:2,自引:0,他引:2  
DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.  相似文献   

11.
Wireframe DNA origami assemblies can now be programmed automatically from the top-down using simple wireframe target geometries, or meshes, in 2D and 3D, using either rigid, six-helix bundle (6HB) or more compliant, two-helix bundle (DX) edges. While these assemblies have numerous applications in nanoscale materials fabrication due to their nanoscale spatial addressability and high degree of customization, no easy-to-use graphical user interface software yet exists to deploy these algorithmic approaches within a single, standalone interface. Further, top-down sequence design of 3D DX-based objects previously enabled by DAEDALUS was limited to discrete edge lengths and uniform vertex angles, limiting the scope of objects that can be designed. Here, we introduce the open-source software package ATHENA with a graphical user interface that automatically renders single-stranded DNA scaffold routing and staple strand sequences for any target wireframe DNA origami using DX or 6HB edges, including irregular, asymmetric DX-based polyhedra with variable edge lengths and vertices demonstrated experimentally, which significantly expands the set of possible 3D DNA-based assemblies that can be designed. ATHENA also enables external editing of sequences using caDNAno, demonstrated using asymmetric nanoscale positioning of gold nanoparticles, as well as providing atomic-level models for molecular dynamics, coarse-grained dynamics with oxDNA, and other computational chemistry simulation approaches.  相似文献   

12.
With the emergences of engineered devices at microscale and nanoscale dimensions, there is a growing need for controlled actuation and transport at these length scales. The kinesin–microtubule system provides a highly evolved biological transport system well suited for these tasks. Accordingly, there is an ongoing effort to create hybrid nanodevices that integrate biological components with engineered materials for applications such as biological separations, nanoscale assembly, and sensing. Adopting microtubules for these applications generally requires covalent attachment of biotin, fluorophores, or other biomolecules to tubulin enable surface or cargo attachment, or visualization. This review summarizes different strategies for functionalizing microtubules for application-focused as well as basic biological research. These functionalization strategies must maintain the integrity of microtubule proteins so that they do not depolymerize and can be transported by kinesin motors, while adding utility such as the ability to reversibly bind cargo. The relevant biochemical and electrical properties of microtubules are discussed, as well as strategies for microtubule stabilization and long-term storage. Next, attachment strategies, such as antibodies and DNA hybridization that have proven useful to date, are discussed in the context of ongoing hybrid nanodevice research. The review concludes with a discussion of less explored opportunities, such as harnessing the utility of tubulin posttranslational modifications and the use of recombinant tubulin that may enable future progress in nanodevice development.  相似文献   

13.
A major challenge in synthetic gene delivery is to quantitatively predict the optimal design of polymer-based gene carriers (polyplexes). Here, we report a consistent, integrated, and fundamentally grounded computational methodology to address this challenge. This is achieved by accurately representing the spatio-temporal dynamics of intracellular structures and by describing the interactions between gene carriers and cellular components at a discrete, nanoscale level. This enables the applications of systems tools such as optimization and sensitivity analysis to search for the best combination of systems parameters. We validate the approach using DNA delivery by polyethylenimine as an example. We show that the cell topology (e.g., size, circularity, and dimensionality) strongly influences the spatiotemporal distribution of gene carriers, and consequently, their optimal intracellular pathways. The model shows that there exists an upper limit on polyplexes' intracellular delivery efficiency due to their inability to protect DNA until nuclear entry. The model predicts that even for optimally designed polyethylenimine vectors, only approximately 1% of total DNA is delivered to the nucleus. Based on comparison with gene delivery by viruses, the model suggests possible strategies to significantly improve transfection efficiencies of synthetic gene vectors.  相似文献   

14.
Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed.  相似文献   

15.
Temperature measurement at the nanoscale has brought insight to a wide array of research interests in modern chemistry, physics, and biology. These measurements have been enabled by the advent of nanothermometers, which relay nanoscale temperature information through the analysis of their intrinsic photophysical behavior. In the past decade, several nanothermometers have been developed including dyes, nanodiamonds, fluorescent proteins, nucleotides, and nanoparticles. However, temperature measurement using intact DNA has not yet been achieved. Here, we present a method to study the temperature sensitivity of the DNA molecule within a physiologic temperature range when complexed with fluorescent dye. We theoretically and experimentally report the temperature sensitivity of the DNA-Hoechst 33342 complex in different sizes of double-stranded oligonucleotides and plasmids, showing its potential use as a nanothermometer. These findings allow for extending the thermal study of DNA to several research fields including DNA nanotechnology, optical tweezers, and DNA nanoparticles.  相似文献   

16.
From molecular biology to nanotechnology and nanomedicine   总被引:2,自引:0,他引:2  
  相似文献   

17.
DNA dendrimers have achieved increasing attention recently. Previously reported DNA dendrimers used Y-DNA as monomers. Tetrahedron DNA is a rigid tetrahedral cage made of DNA. Herein, we use tetrahedron DNA as monomers to prepare tetrahedron DNA dendrimers. The prepared tetrahedron DNA dendrimers have larger size compared with those made of Y-DNA. In addition, thanks to the central cavity of tetrahedron DNA monomers, some nanoscale structures (e.g., gold nanoparticles) can be encapsulated within tetrahedron DNA monomers. Tetrahedron DNA encapsulated with gold nanoparticles can be further assembled into dendrimers, guiding gold nanoparticles into clusters.  相似文献   

18.
Materials that combine inorganic components and biological molecules provide a new paradigm for synthesizing nanoscale and larger structures with tailored physical properties. These synthesis techniques utilize the molecular recognition properties of many biological molecules to nucleate and control growth of the nanoscale structure. Phage-displayed peptide libraries are a powerful tool to identify peptides that selectively recognize and bind to a variety of inorganic surfaces that are utilized in electronic and photonic devices. These libraries have been used extensively to study the peptide-mediated nucleation and growth of some metallic and semiconducting materials, and the application to designed nanostructures has been demonstrated.  相似文献   

19.
A computer-aided design strategy allows scientists to 'staple' DNA molecules into a wide variety of two-dimensional shapes, generating precisely arranged scaffolds that could serve as promising platforms for nanoscale research applications.  相似文献   

20.
Biodevices composed of biomolecular layer have been developed in various fields such as medical diagnosis, pharmaceutical screening, electronic device, photonic device, environmental pollution detection device, and etc. The biomolecules such as protein, DNA and pigment, and cells have been used to construct the biodevices such as biomolecular diode, biostorage device, bioelectroluminescence device, protein chip, DNA chip, and cell chip. Substantial interest has focused upon thin film fabrication or the formation of biomaterials mono- or multi-layers on the solid surfaces to construct the biodevices. Based on the development of nanotechnology, nanoscale fabrication technology for biofilm has been emerged and applied to biodevices due to the various advantages such as high density immobilization and orientation control of immobilized biomolecules. This review described the nanoscale fabrication of biomolecular film and its application to bioelectronic devices and biochips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号