首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TolQ is a 230-amino-acid protein required to maintain the integrity of the bacterial envelope and to facilitate the import of both filamentous bacteriophage and group A colicins. Cellular fractionation experiments showed TolQ to be localized to the cytoplasmic membrane. Bacteria expressing a series of TolQ-beta-galactosidase and TolQ-alkaline phosphatase fusion proteins were analyzed for the appropriate enzyme activity, membrane location, and sensitivity to exogenously added protease. The results are consistent with TolQ being an integral cytoplasmic membrane protein with three membrane-spanning regions. The amino-terminal 19 residues as well as a small loop in the 155 to 170 residue region appear exposed in the periplasm, while the carboxy terminus and a large loop after the first transmembrane region are cytoplasmic. Amino-terminal sequence analysis of TolQ purified from the membrane revealed the presence of the initiating formyl methionine group, suggesting a rapid translocation of the amino-terminal region across the cytoplasmic membrane. Analysis of various tolQ mutant strains suggests that the third transmembrane region as well as parts of the large cytoplasmic loop are necessary for activity.  相似文献   

2.
The requirement for the activation of phospholipase A by the colicin A lysis protein (Cal) in the efficient release of colicin A by Escherichia coli cells containing colicin A plasmids was studied. In particular, we wished to determine if this activation is the primary effect of Cal or whether it reflects more generalized damage to the envelope caused by the presence of large quantities of this small acylated protein. E. coli tolQ cells, which were shown to be leaky for periplasmic proteins, were transduced to pldA and then transformed with the recombinant colicin A plasmid pKA. Both the pldA and pldA+ strains released large quantities of colicin A following induction, indicating that in these cells phospholipase A activation is not required for colicin release. This release was, however, still dependent on a functioning Cal protein. The assembly and processing of Cal in situ in the cell envelope was studied by combining pulse-chase labelling with isopycnic sucrose density gradient centrifugation of the cell membranes. Precursor Cal and lipid-modified precursor Cal were found in the inner membrane at early times of chase, and gave rise to mature Cal which accumulated in both the inner and outer membrane after further chase. The signal peptide was also visible on these gradients, and its distribution too was restricted to the inner membrane. Gradient centrifugation of envelopes of cells which were overproducing Cal resulted in very poor separation of the membranes. The results of these studies provide evidence that the colicin A lysis protein causes phospholipase A-independent alterations in the integrity of the E. coli envelope.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In Gram-negative bacteria, many biological processes are coupled to inner membrane ion gradients. Ions transit at the interface of helices of integral membrane proteins, generating mechanical energy to drive energetic processes. To better understand how ions transit through these channels, we used a model system involved in two different processes, one of which depends on inner membrane energy. The Tol machinery of the Escherichia coli cell envelope is dedicated to maintaining outer membrane stability, a process driven by the proton-motive force. The Tol system is parasitized by bacterial toxins called colicins, which are imported through the outer membrane using an energy-independent process. Herein, we mutated TolQ and TolR transmembrane residues, and we analyzed the mutants for outer membrane stability, colicin import and protein complex formation. We identified residues involved in the assembly of the complex, and a new class of discriminative mutations that conferred outer membrane destabilization identical to a tol deletion mutant, but which remained fully sensitive to colicins. Further genetic approaches revealed transmembrane helix interactions and organization in the bilayer, and suggested that most of the discriminative residues are located in a putative aqueous ion channel. We discuss a model for the function of related bacterial molecular motors.  相似文献   

4.
The TolQ and TolR proteins of Escherichia coli are required for the uptake of group A colicins and for infection by filamentous phages. Their topology in the cytoplasmic membrane was determined by cleavage with aminopeptidase K, proteinase K, and trypsin in spheroplasts and cell lysates. From the results obtained, it is proposed that the N terminus of TolQ is located in the periplasm and that it contains three transmembrane segments (residues 9 to 36, 127 to 159, and 162 to 191), a small periplasmic loop, and two large portions in the cytoplasm. The N terminus of TolR is located in the cytoplasm and is followed by a transmembrane segment (residues 21 to 40), and the remainder of the protein is located in the periplasm. A tolQ mutant, which rendered cells resistant to group A colicins and sensitive to cholate, had alanine 13 replaced by glycine and was lacking serine 14 in the first transmembrane segment. The membrane topologies of TolQ and TolR are similar to those proposed for ExbB and ExbD, respectively, which is consistent with the partial functional substitution between ExbB and TolQ and between ExbD and TolR. The amino acid sequences of these proteins display the highest homology in the transmembrane segments, which indicates that the membrane-spanning regions play an important role in the activities of the proteins.  相似文献   

5.
The TolQ, TolR, TolA, TolB, and Pal proteins appear to function in maintaining the integrity of the outer membrane, as well as facilitating the uptake of the group A colicins and the DNA of the infecting filamentous bacteriophages. Sequence data showed that these genes are clustered in a 6-kb segment of DNA with the gene order orf1 tolQ tolR tolA tolB pal orf2 (a newly identified open reading frame encoding a 29-kD9 protein). Like those containing orf1, bacteria containing an insertion mutation in this gene showed no obvious phenotype. Analysis of beta-galactosidase activity from fusion constructs in which the lac operon was fused to various genes in the cluster showed that the genes in this region constitute two separate operons: orf1 tolQRA and tolB pal orf2. In the orf1 tolQRA operon, translation of MR was dependent on translation of the upstream tolQ region. Consistent with this result, no functional ribosome-binding site for TolR synthesis was detected.  相似文献   

6.
Escherichia coli possesses two energy-coupled import systems through which substances of low concentration and of a size too large to permit diffusion through the porins are translocated across the outer membrane. Group B colicins, ferric siderophores and vitamin B12 are taken up via the TonB-ExbB-ExbD, group A colicins via the TolA-TolQ-TolR system. Cross-complementation between the two systems was demonstrated in that tolQ tolR mutants transformed with plasmids carrying exbB exbD became sensitive to group A colicins, and exbB exbD mutants transformed with plasmid-encoded tolQ tolR became sensitive to group B colicins. TolQ-TolR interacted through TonB, and ExbB-ExbD interacted through TolA with the outer membrane receptors and colicins. Activity of ExbB ExbD via TolA was higher in cells laciting TonB, and activity of TolQ TolR via TonB was increased when TolA was missing. The very distinct TolA and TonB proteins mediate exclusive interaction with group A and group B receptors, respectively. ExbB-TolR and ExbD-TolQ mixtures showed little if any complementation of exbB exbD and tolQ tolR mutants indicating coevolution of ExbB with ExbD and TolQ with ToIR. Sequence homology and mutual functional substitution of ExbB-ExbD and TolQ-TolR suggest the evolution of the two import systems from a single import system.  相似文献   

7.
TolQ, TolR, and TolA inner membrane proteins of Escherichia coli are involved in maintaining the stability of the outer membrane. They share homology with the ExbB, ExbD, and TonB proteins, respectively. The last is involved in energy transduction between the inner and the outer membrane, and its conformation has been shown to depend on the presence of the proton motive force (PMF), ExbB, and ExbD. Using limited proteolysis experiments, we investigated whether the conformation of TolA was also affected by the PMF. We found that dissipation of the PMF by uncouplers led to the formation of a proteinase K digestion fragment of TolA not seen when uncouplers are omitted. This fragment was also detected in Delta tolQ, Delta tolR, and tolA(H22P) mutants but, in contrast to the parental strain, was also seen in the absence of uncouplers. We repeated those experiments in outer membrane mutants such as lpp, pal, and Delta rfa mutants: the behavior of TolA in lpp mutants was similar to that observed with the parental strain. However, the proteinase K-resistant fragment was never detected in the Delta rfa mutant. Altogether, these results suggest that TolA is able to undergo a PMF-dependent change of conformation. This change requires TolQ, TolR, and a functional TolA N-terminal domain. The potential role of this energy-dependent process in the stability of the outer membrane is discussed.  相似文献   

8.
The Tol-Pal system of the Escherichia coli cell envelope is composed of five proteins. TolQ, TolR and TolA form a complex in the inner membrane, whereas TolB is a periplasmic protein interacting with Pal, the peptidoglycan-associated lipoprotein anchored to the outer membrane. This system is required for outer membrane integrity and has been shown to form a trans-envelope bridge linking inner and outer membranes. The TolA-Pal interaction plays an important role in the function of this system and has been found to depend on the proton motive force and the TolQ and TolR proteins. The Pal lipoprotein interacts with many components, such as TolA, TolB, OmpA, the major lipoprotein and the murein layer. In this study, six pal deletions were constructed. The analyses of the resulting Pal protein functions and interactions defined an N-terminal region of 40 residues, which can be deleted without any cell-damaging effect, and three independent regions required for its interaction with TolA, OmpA and TolB or the peptidoglycan. The analyses of the integrity of the cells producing the various Pal lipoproteins revealed strong outer membrane destabilization only when binding regions were deleted. Furthermore, a conserved polypeptide sequence located downstream of the peptidoglycan binding motif of Pal was required for the TolA-Pal interaction and for the maintenance of outer membrane stability.  相似文献   

9.
Cells of Escherichia coli pump cobalamin (vitamin B12) across their outer membranes into the periplasmic space, and it was concluded previously that this process is potentiated by the proton motive force of the inner membrane. The novelty of such an energy coupling mechanism and its relevance to other outer membrane transport processes have required confirmation of this conclusion by studies with cells in which cobalamin transport is limited to the outer membrane. Accordingly, I have examined the effects of cyanide and of 2,4-dinitrophenol on cobalamin uptake in btuC and atp mutants, which lack inner membrane cobalamin transport and the membrane-bound ATP synthase, respectively. Dinitrophenol eliminated cobalamin transport in all strains, but cyanide inhibited this process only in atp and btuC atp mutant cells, providing conclusive evidence that cobalamin transport across the outer membrane requires specifically the proton motive force of the inner membrane. The coupling of metabolic energy to outer membrane cobalamin transport requires the TonB protein and is stimulated by the ExbB protein. I show here that the tolQ gene product can partly replace the function of the ExbB protein. Cells with mutations in both exbB and tolQ had no measurable cobalamin transport and thus had a phenotype that was essentially the same as TonB-. I conclude that the ExbB protein is a normal component of the energy coupling system for the transport of cobalamin across the outer membrane.  相似文献   

10.
Cavard D 《Journal of bacteriology》2002,184(13):3723-3733
Three oligomeric forms of colicin A with apparent molecular masses of about 95 to 98 kDa were detected on sodium dodecyl sulfate (SDS)-polyacrylamide gels loaded with unheated samples from colicin A-producing cells of Escherichia coli. These heat-labile forms, called colicins Au, were visualized both on immunoblots probed with monoclonal antibodies against colicin A and by radiolabeling. Cell fractionation studies show that these forms of colicin A were localized in the outer membrane whether or not the producing cells contained the cal gene, which encodes the colicin A lysis protein responsible for colicin A release in the medium. Pulse-chase experiments indicated that their assembly into the outer membrane, as measured by their heat modifiable migration in SDS gels, was an efficient process. Colicins Au were produced in various null mutant strains, each devoid of one major outer membrane protein, except in a mutant devoid of both OmpC and OmpF porins. In cells devoid of outer membrane phospholipase A (OMPLA), colicin A was not expressed. Colicins Au were detected on immunoblots of induced cells probed with either polyclonal antibodies to OmpF or monoclonal antibodies to OMPLA, indicating that they were associated with both OmpF and OMPLA. Similar heat-labile forms were obtained with various colicin A derivatives, demonstrating that the C-terminal domain of colicin A, but not the hydrophobic hairpin present in this domain, was involved in their formation.  相似文献   

11.
The Tol-PAL system of Escherichia coli is a multiprotein system involved in maintaining the cell envelope integrity and is necessary for the import of some colicins and phage DNA into the bacterium. It is organized into two complexes, one near the outer membrane between TolB and PAL and one in the cytoplasmic membrane between TolA, TolQ, and TolR. In the cytoplasmic membrane, all of the Tol proteins have been shown to interact with each other. Cross-linking experiments have shown that the TolA transmembrane domain interacts with TolQ and TolR. Suppressor mutant analyses have localized the TolQ-TolA interaction to the first transmembrane domain of TolQ and have shown that the third transmembrane domain of TolQ interacts with the transmembrane domain of TolR. To get insights on the composition of the cytoplasmic membrane complex and its possible contacts with the outer membrane complex, we focused our attention on TolR. Cross-linking and immunoprecipitation experiments allowed the identification of Tol proteins interacting with TolR. The interactions of TolR with TolA and TolQ were confirmed, TolR was shown to dimerize, and the resulting dimer was shown to interact with TolQ. Deletion mutants of TolR were constructed, and they allowed us to determine the TolR domains involved in each interaction. The TolR transmembrane domain was shown to be involved in the TolA-TolR and TolQ-TolR interactions, while TolR central and C-terminal domains appeared to be involved in TolR dimerization. The role of the TolR C-terminal domain in the TolA-TolR interaction and its association with the membranes was also demonstrated. Furthermore, phenotypic studies clearly showed that the three TolR domains (N terminal, central, and C terminal) and the level of TolR production are important for colicin A import and for the maintenance of cell envelope integrity.  相似文献   

12.
Escherichia coli ompA mutants are tolerant to colicin L-JF246. This tolerance can be overcome by a variety of treatments that have as their target the outer membrane or the peptidoglycan layers of the cell envelope. Thus, increasing the concentration of colicin L, releasing lipopolysaccharide from the outer membrane by treatment of intact cells with ethylenediaminetetracetic acid (EDTA), converting cells to spheroplasts by treatment with lysozyme-EDTA or penicillin, or trypsin, treatment of intact cells will result in an increased colicin sensitivity. These treatments alter the outer membrane of ompA mutants and suggest that the altered outer membrane may allow the penetration of at least a portion of the colicin L molecule to a site of action located within this barrier. To substantiate this, we have demonstrated that membrane vesicles prepared from ompA mutants are sensitive to colicin L and that 14C-labeled colicin L binds rapidly to both the outer and inner membrane fractions of the cell.  相似文献   

13.
Induction of the lysis protein of the ColE operon is known to be essential for colicin release. Thus far, the involvement of inner membrane in this unique protein exportation process has not been elucidated. In this work, fluorescent dyes were used to monitor the permeability change of both inner and outer membranes in response to induction of the lysis protein. We found that induction of permeability of the inner membrane appeared earlier than that of the outer membrane before the occurrence of the decline in culture turbidity. Interestingly, we also found that change of outer membrane permeability was alleviated in the outer membrane phospholipase A (OMPLA)-deficient mutant 135 min after induction. Thus, in this work, we show that permeability change of the inner membrane induced by the lysis protein is likely involved in the basal level of colicin release. A greater release of colicin coincided with the decline in culture turbidity and should be associated with the activation of OMPLA at the late stage of induction of the lysis protein.  相似文献   

14.
The TolQRA proteins of Escherichia coli form an inner membrane complex involved in the maintenance of the outer membrane stability and in the late stages of cell division. The TolQR complex uses the proton-motive force to regulate TolA conformation and its interaction with the outer membrane Pal lipoprotein. It has been proposed that an ion channel forms at the TolQR transmembrane helix interface. This complex assembles with a minimal TolQ/TolR ratio of 4:2, therefore involving at least 14 transmembrane helices, which may form the ion pathway. The C-terminal periplasmic domain of TolR protein interacts with TolQ and has been proposed to control the TolQR channel activity. Here, we constructed unique cysteine substitutions in the last 27 residues of TolR. Each of the substitutions results in a functional TolR protein. Disulfide cross-linking demonstrates that the TolQR complex is dynamic, involving conformational modifications of TolR C-terminal domain. We monitored these structural changes by cysteine accessibility experiments and showed that the conformation of this domain is responsive to the proton-motive force and on the presence of critical residues of the ion pathway.  相似文献   

15.
The lysis protein of the colicinogenic operon is essential for colicin release and its main function is to activate the outer membrane phospholipase A (OMPLA) for the traverse of colicin across the cell envelope. However, little is known about the involvement of the lysis protein in the translocation of colicin across the inner membrane into the periplasm. The introduction of specific point mutations into the lipobox or sorting signal sequence of the lysE7 gene resulted in the production of various forms of lysis proteins. Our experimental results indicated that cells with wild-type mature LysE7 protein exhibited higher efficiency of colicin E7 translocation across the inner membrane into the periplasm than those with premature LysE7 protein. Moreover, the degree of permeability of the inner membrane induced by the mature LysE7 protein was significantly increased as compared to the unmodified LysE7 precursor. These results suggest that the efficiency of colicin movement into the periplasm is correlated with the increase in inner membrane permeability induced by the LysE7 protein. Thus, we propose that mature LysE7 protein has two critical roles: firstly mediating the translocation of colicin E7 across the inner membrane into the periplasm, and secondly activating the OMPLA to allow colicin release.  相似文献   

16.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

17.
Colicins translocate across the Escherichia coli outer membrane and periplasm by interacting with several receptors. After first binding to the outer membrane surface receptors via their central region, they interact with TolA or TonB proteins via their N-terminal region. Colicin N residues critical to TolA binding have been discovered, but the full extent of any colicin TolA site is unknown. We present, for the first time, a fully mapped TolA binding site for a colicin. It was determined through the use of alanine-scanning mutants, glutathione S-transferase fusion peptides and Biacore/fluorescence binding studies. The minimal TolA binding region is 27 residues and of similar size to the TolA binding region of bacteriophage g3p-D1 protein. Stopped-flow kinetic studies show that the binding to TolA follows slow association kinetics. The role of other E. coli Tol proteins in colicin translocation was also investigated. Isothermal titration microcalorimetry (ITC) and in vivo studies conclusively show that colicin N translocation does not require the presence of TolB. ITC also demonstrated colicin A interaction with TolB, and that colicin A in its native state does not interact with TolAII-III. Colicin N does not bind TolR-II. The TolA protein is shown to be unsuitable for direct immobilisation in Biacore analysis.  相似文献   

18.
The colicin A polypeptide chain (592 amino acid residues) contains three domains which are linearly organized and participate in the sequential steps involved in colicin action. We have compared the penetrating ability in phospholipid monolayers and the ability to promote vesicle fusion at acidic pH of colicin A and of protein derivatives containing various combinations of its domains. The NH2-terminal domain (171 amino acid residues), required for translocation across the outer membrane, has little affinity for dilauroylphosphatidylglycerol (DLPG) monolayers at all pHs tested. The central domain has a pH-dependent affinity, although lower than that of the entire colicin A. The COOH-terminal domain contains a high-affinity lipid binding site, but in addition an electrostatic interaction is required as a first step in the process of penetration into negatively charged DLPG films. In contrast to the constructs containing the ionophoric domain, the NH2-terminal domain alone has no fusogenic activity for liposomes. These results are discussed with regard to the mechanism of entry and action of colicin A in sensitive cells. Our results suggest the existence of a pH-dependent interaction between the receptor binding domain (amino acid residues 172-388) and the pore-forming domain of colicin A (amino acid residues 389-592).  相似文献   

19.
The product of the malE—lacZ gene fusion was reported to compete with some proteins including outer membrane lipoprotein in the protein translocation across the Echerichia coli membrane. The fusion product also inhibited colicin E1 export. Furthermore, globomycin, which accumulated prolipoprotein in the membrane, inhibited the translocation of colicin E1 in the wild-type cells, but not in lipoprotein-negative mutant cells. Since colicin E1 contains the internal signal-like sequence [Proc. Natl. Acad. Sci. USA (1982) 79, 2827–2831], these results suggest that colicin E1 is exported by the aid of this sequence at a common site for maltose-binding protein and lipoprotein translocation.  相似文献   

20.
The FhuA receptor in the outer membrane of Escherichia coli K-12 is involved in the uptake of ferrichrome, colicin M, and the antibiotic albomycin and in infection by phages T1, T5, and phi 80. Fragments of up to 16 amino acid residues were inserted into FhuA and used to determine FhuA active sites and FhuA topology in the outer membrane. For this purpose antibiotic resistance boxes flanked by symmetric polylinkers were inserted into fhuA and subsequently partially deleted. Additional in-frame insertions were generated by mutagenesis with transposon Tn1725. The 68 FhuA protein derivatives examined contained segments of 4, 8, 12, 16, and 22 additional amino acid residues at 34 different locations from residues 5 to 646 of the mature protein. Most of the FhuA derivatives were found in normal amounts in the outer membrane fraction. Half of these were fully active toward all ligands, demonstrating proper insertion into the outer membrane. Seven of the 12- and 16-amino-acid-insertion derivatives (at residues 378, 402, 405, 415, 417, 456, and 646) were active toward all of the ligands and could be cleaved by subtilisin in whole cells, suggesting a surface location of the extra loops at sites which did not affect FhuA function. Two mutants were sensitive to subtilisin (insertions at residues 511 and 321) but displayed a strongly reduced sensitivity to colicin M and to phages phi 80 and T1. Four of the insertion derivatives (at residues 162, 223, 369, and 531) were cleaved only in spheroplasts and probably form loops at the periplasmic side of the outer membrane. The number and size of the proteolytic fragments indicate cleavage at or close to the sites of insertion, which has been proved for five insertions by amino acid sequencing. Most mutants with functional defects were affected in their sensitivity to all ligands, yet frequently to different degrees. Some mutants showed a specifically altered sensitivity to a few ligands; for example, mutant 511-04 was partially resistant only to colicin M, mutant 241-04 was reduced in ferrichrome and albomycin uptake and showed a reduced colicin M sensitivity, and mutant 321-04 was fully resistant to phage T1 and partially resistant to phage phi 80. The altered residues define preferential binding sites for these ligands. Insertions of 4 to 16 residues at positions 69, 70, 402, 530, 564, and 572 resulted in strongly reduced amounts of FhuA in the outer membrane fraction, varying in function from fully active to inactive. These results provide the basis for a model of FhuA organization in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号