首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PGE1 relaxed isolated human circular bronchial muscle over a wide concentration range as did isoprenaline. Surprisingly isoprenaline was more potent than PGE1. PGF2 weakly contracted this muscle preparation whereas histamine was more potent. PGE2, however, produced paradoxical results, relaxing some tissues and contracting others, always in a concentration-related manner irrespective of tissue tone. In preparations that contracted to PGE2, tachyphylaxis induced to PGF2 also applied to PGE2, but did not affect PGE1 relaxations or histamine contractions. These findings suggest that PGE2 can stimulate either PGF2 or PGE1 receptors of isolated human bronchial muscle.  相似文献   

2.
Both NaCl and NaF promoted PGE2 binding to epididymal adipocyte membranes by apparent increase in the binding affinity. In order to distinguish between the effect of fluoride and the ‘salt effect’ of sodium on PGE2 binding, the effects of Mg2+ and guanyl nucleotides on PGE2 binding in the presence of NaCl or NaF were compared. Mg2+ decreased PGE2 binding; high NaF concentration abolished this inhibition, while increased NaCl concentratipns did not affect the Mg2+ inhibition. In the presence of Mg2+ the effects of NaCl and NaF were additive. The enhancement of PGE2 binding by fluoride, unlike sodium, was dependent on the presence of Mg2+. Induction of the membranes with GDPβS, Gpp(NH)p, GTP or GTPγS increased PGE, binding. Gradual increase in NaF concentrations in the presence of guanyl nucleotides resulted in stimulation of PGE2 binding at low NaF concentrations and inhibition of PGE2 binding at higjh NaF concentrations. No changes in the stimulatory action of NaCl on PGE2 binding were observed in the simulatenous presence of NaCl and guanyl nucleotides. A biphasic effect on PGE2 binding was observed with a wide concentration range of guanyl nucleotides. Treatment of the isolated membranes with cholera or pertussis toxins stimulated the adenylyl cyclase activity of the membranes, but failed to influence PGE2 binding. The implications of these findings are discussed.  相似文献   

3.
Myometrial low speed supernatant prepared from non-pregnant rhesus uteri was incubated with 3H-Prostaglandin (PG) E1 with or without addition of unlabelled prostaglandins. The uptake of 3H-PGE1 was inhibited in a dose dependent fashion by PGE2>PGE1>PGA1>PGF2=PGA1>PGB1=PGB2≥PGD2. PGE1 metabolites inhibited 3H-PGE1 binding in the following order: 13,14-dihydro-PGE1>13,14-dihydro-15-keto-PGE1=15-keto-PGE1. The specific binding of 3H-PGE1 and 3H-PGF2 was similarly affected by the temperature and time of incubation. Equilibrium binding constants determined using rhesus uteri obtained during the luteal phase of the menstrual cycle indicate the presence of high affinity PGE1 binding sites with an average (n=3) apparent dissociation constant of 2.2 × 10−9M and a lower affinity PGE1 binding site with a Kd 1 × 10−8M. No high affinity — low capacity 3H-PGF2 sites could be demonstrated.

Relative uterine stimulating potencies of some natural prostaglandins and prostaglandin analogs tested after acute intravenous administration in mid-pregnant rhesus monkeys corresponded with the PGE1 binding inhibition of the respective compound. The uterine stimulating potencies of the prostaglandin analogs tested were: (15S)-15-methyl-PGE2=16,16-dimethyl-PGE2>17-phenyl-18,19,20-trinor-P GE2>16 phenoxy-17,18,19,20-tetranor-PGE2=PGE2=PGE1=(15S)-15-methyl-PGE2>PGF2.  相似文献   


4.
In order to specify the source of locally synthesized prostaglandin (PG) E2 which is able to saturate the large class of low affinity PGE2 receptors in chick spinal cord, bioconversion of [1-14C]arachidonic acid into prostanoids was studied in homogenates of chick spinal cord and meninges first without addition of exogenous glutathione (GSH). Homogenates of spinal cord produced 14C-labeled PGE2, PGD2 and PGF2. Homogenates of meninges accumulated much larger amounts of [14C]PGE2 than spinal cord and surprisingly a 14C-labeled arachidonate metabolite referred to as compound Y. Compound Y generation, which was inhibited by indomethacin and enhanced by esculetin, was therefore mediated through the cyclooxygenase pathway. The fact that no labeled compound Y was detected in homogenates incubated with [3H]PGD2 or [3H]PGE2 indicated that compound Y was not degradation product of PGs. Secondly, after addition of exogenous GSH, 14C-labeled compound Y was totally converted into [14C]PGE2. The compound Y which is converted into PGFs after a strong reduction with NaBH4 and into PGE2 after a mild reduction with GSH-hemin system or SnCl2 was therefore assumed to be a 15 hydroperoxy-PGE2 (15 HP-PGE2). These results suggest that PGE2 can be synthesized in meninges either by the classical isomerization of PGH2 or by isomerization of PGG2 followed by a GSH-sensitive reaction.  相似文献   

5.
Influence of dietary vitamin E on prostaglandin biosynthesis in rat blood   总被引:2,自引:0,他引:2  
A vitamin E (-tocopherol) deficient diet stimulated prostaglandin biosynthesis in coagulating rat blood. Prostaglandins were extracted from serum, purified and bioassayed. The identity of prostaglandin E2 was confirmed by gas chromatography-mass spectrometry. Withholding vitamin E from the diet caused a marked increase in PGE2 and a lesser increase in PGF2 production in serum. In rats maintained on diets containing different concentrations of vitamin E, serum concentrations of PGE2 and PGF2 were inversely related to serum concentrations of -tocopherol. These data suggest that in vivo -tocopherol inhibits the endogenous conversion of arachidonic acid into PGE2 and PGF2. The possibility that -tocopherol may inhibit the formation of endoperoxide intermediates of PGE2 and PGF2 biosynthesis and subsequent induction of platelet aggregation is discussed.  相似文献   

6.
Turkeys are hypertensive compared to mammals of similar size. In vitro synthesis of thrombocyte thromboxane B2 (TxB2), 12L-hydroxy-5, 8, 10 heptadecatrienoic acid (HHT), 12L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) and aortic prostaglandin (PG) production was studied in one to ten month old domestic white turkeys. Compared to normal human platelets, TxB2 production was increased (55.4 vs. 31.4%) and HETE production was markedly reduced (6.5 vs. 34.6%) in control thrombocytes. Similar to human platelets in which cyclooxygenase inhibition with aspirin results in an increase in HETE production, block of the thrombocyte enzyme with aspirin doubled the production of HETE. In vitro conversion of radiolabeled arachidonic acid (AA) showed that the primary PG produced by turkey aorta was PGE2. A 6-keto immunoreactive PG was present which comigrated with authentic 6-keto PGF1, but failure of the aortic supernatant to inhibit adenosine diphosphate or AA induced platelet aggregation suggested that PGI2 was not produced. The vasodepressor potency of PGE1, PGE2 and PGI2 was altered in awake turkeys with PGE1 and PGE2 having five times the hypotensive effect as PGI2. In addition, conversion of AA to PGE2 by aorta in one month turkeys was greater (17.3 vs. 9.2%) than in ten month old turkeys. Systemic arterial pressure was increased in the ten month old turkeys (188 mmHg) compared to one month old turkeys (143 mmHg). Thus, both vascular AA metabolism and the vasodepressor potencies of PGE2 and PGI2 are altered and the activity of the lipoxygenase pathway in thrombocytes is limited in the turkey.  相似文献   

7.
We investigated effect of aldehydic products of lipid peroxidation, malondialdehyde (MDA) and 4-hydrox-ynonenal (HNE) on prostaglandin (PG) E2 receptors of liver plasma membranes. The modification of the membranes by MDA diminished PGE2 binding, decreasing receptor affinity for PGE2 and receptor density whereas HNE increased PGE2 binding, enhanced receptor density but did not changed receptor affinity. ESR study showed the decrease of the whole membrane fluidity after modification by MDA whereas HNE lowered membrane fluidity only in the internal zone of lipid bilayer and increased it in the surface area. The possible effects of membrane changes caused by MDA and HNE on PGE2 receptor parameters are discussed.  相似文献   

8.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 1/20 of that of bradykinin (BK) on a weight basis. The activity of PGF1 and PGF2 was only 1/20 of that of PGE1 or PGE2.

In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1/3–1/8 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the anti-histamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   


9.
Osteocytes embedded in the matrix of bone are mechanosensory cells that translate strain into signals and regulate bone remodeling. Our previous studies using osteocyte-like MLO-Y4 cells have shown that fluid flow shear stress (FFSS) increases connexin (Cx) 43 protein expression, prostaglandin E2 (PGE2) release, and intercellular coupling, and PGE2 is an essential mediator between FFSS and gap junctions. However, the role of Cx43 in the release of PGE2 in response to FFSS is unknown. Here, the FFSS-loaded MLO-Y4 cells with no or few intercellular channels released significantly more PGE2 per cell than those cells at higher densities. Antisense Cx43 oligonucleotides and 18 β-glycyrrhetinic acid, a specific gap junction and hemichannel blocker, significantly reduced PGE2 release by FFSS at all cell densities tested, especially cells at the lowest density without gap junctions. FFSS, fluid flow-conditioned medium, and PGE2 increased the activity of dye uptake. Moreover, FFSS induced Cx43 to migrate to the surface of the cell; this surface expressed Cx43 developed resistance to Triton-X-100 solublization. Our results suggest that hemichannels formed by Cx43, instead of intercellular channels, are likely to play a predominant role in the release of intracellular PGE2 in response to FFSS.  相似文献   

10.
The effect of exogenous prostaglandins E1, E2 and F2 (PGE1, PGE2 and PGF2) on 3H-leucine, 3H-uridine, 3H-thymidine and 3H-proline incorporation in experimental cutaneous wounds has been studied in rats.

Prostaglandins E1 and E2 markedly stimulate the incorporation of these tritiated precursors, into protein, RNA, DNA and collagen synthesis, whereas F2 inhibits it. All tested prostaglandins exhibit their maximum effect within the first hours following administration. Most active is PGE1. These observations indicate that application of prostaglandins significantly stimulate incorporation with protein, RNA, DNA and collagen synthesis in the skin of wounded rats and thus, may play a role in epidermal cell growth and division as well as in scar-forming tissue.  相似文献   


11.
Bradbury DA  Corbett L  Knox AJ 《FEBS letters》2004,560(1-3):30-34
Here we studied the role of phosphoinositide 3-kinase (PI 3-kinase) and mitogen activated protein (MAP) kinase in regulating bradykinin (BK) induced prostaglandin E2 (PGE2) production in human pulmonary artery smooth muscle cells (HPASMC). BK increased PGE2 in a three step process involving phospholipase A2 (PLA2), cyclooxygenase (COX) and PGE synthase (PGES). BK stimulated PGE2 release in cultured HPASMC was inhibited by the PI 3-kinase inhibitor LY294002 and the p38 MAP kinase inhibitor SB202190. The inhibitory mechanism used by LY294002 did not involve cytosolic PLA2 activation or COX-1, COX-2 and PGES protein expression but rather a novel effect on COX enzymatic activity. SB202190 also inhibited COX activity.  相似文献   

12.
Actions of endothelin-1 on prostaglandin production by gestational tissues   总被引:1,自引:0,他引:1  
Endothelin-1 (10−11M-10−7M) was incubated with human umbilical vein endothelial cells and cells derived from amnion and decidua and prostaglandin production was determined. The rates of biosynthesis of 6-keto-prostaglandin F1 (6-keto-PGF1) and prostaglandin E2 (PGE2) by endothelial cells were increased significantly by treatment with endothelin-1. Amnion cell PGE2 production was reduced significantly by endothelin-1 treatment whereas decidual PGE2 and prostaglandin F2 production was unaffected by this treatment. Thus, it is possible that endothelins may play a part in the regulation of uteroplacental hemodynamics and the mechanisms of parturition.  相似文献   

13.
Prostaglandin (PG) E1 was demonstrated to stimulate the transfer of phosphatidylcholine and cholesterol esters from human high density lipoproteins (HDL3) to low density lipoproteins (LDL). The enhancement effect of PGE1, on the interlipoprotein lipid transfer was seen at low PG concentrations under conditions of spontaneous exchange as well as in the presence of lipoprotein-depleted plasma, or partly purified plasma lipid exchange protein. PGE2 and PGF2 showed no significant influence on the interlipoprotein lipid transfer. Evidence is presented suggesting that the PGE1-induced stimulation of interlipoprotein lipid exchange results in enhancement of LCAT-catalyzed cholesterol esterification in plasma. It is proposed that the effect of PGE1 is due to the previously described PGE1-induced reorganization of the HDL surface [(1984) FEBS Lett. 173, 291-293] and that PG-lipoprotein interaction may be a factor regulating cholesterol homeostasis.  相似文献   

14.
Experiments were carried out on anesthetized dogs to compare the effects of prostaglandin E2 (PGE2), prostacyclin (PGI2) and arachidonic acid (AA) administered intraarterially on gastric blood flow and oxygen consumption during constant arterial pressure perfusion and constant flow perfusion of the stomach. Both PGE2 and PGI2 increased total blood flow and oxygen consumption both in the resting stomach and following histamine stimulation although the effects of PGE2 on the oxygen consumption in stimulated stomach were not statistically significant. On the contrary, AA decreased both gastric blood flow and oxygen consumption in the histamine stimulated stomach. To determine if these compounds can influence gastric oxygen consumption independently of their effects on blood flow, the experiments with constant flow perfusion were performed. Both PGE2 and PGI2 decreased both the perfusion pressure and oxygen consumption in the resting as well as in the histamine-stimulated stomach whereas AA increased perfusion pressure and decreased oxygen consumption during histamine administration. Effects of AA were blocked by indomethacin suggesting that not AA itself but some of its metabolites, most likely thromboxanes were responsible for the hemodynamic and metabolic changes resulting from the contraction of gastric arterioles and precapillary sphincters. On the contrary, both PGE2 and PGI2 caused gastric hyperemia and an increase in oxygen consumption in the resting stomach, but decreased the latter parameter in the stimulated stomach, most probably as a result of secretory inhibition overcoming direct vascular effects of these compounds.  相似文献   

15.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

16.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

17.
High levels of radioimmunoassayable PGE2 were measured in the perfusate of isolated kidneys. Indomethacin inhibited PGE2 release in this system. Small reductions in the pressor effects of norepinephrine (NE) were associated with increasing perfusate levels of PGE2; a large increase in the pressor effect of NE followed additions of indomethacin and reductions in perfusate PGE2 levels. A marked reduction in pressor responsiveness to angiotensin II (AII) was measured in the isolated kidney which could not be prevented or reversed by indomethacin. It is believed that tachyphylaxis was responsible for the marked reduction in pressor responsiveness to AII and that this is independent of alterations in prostaglandin metabolism. However prostaglandins appeared to modulate the pressor effects of AII as they did NE in the isolated perfused kidney.  相似文献   

18.
The present study was designed to determine whether biological rhythm variations could be detected in the hypotensive action of prostaglandin E2 (PGE2) and arachidonic acid (AA) in normal rats. Doses of 1.0 μg kg-1 of PGE2 or 0.5 mg kg-1 of AA were administered to pentobarbital-anesthetized rats at 6 times of the day. Maximal reduction of systolic and diastolic blood pressures was obtained when PGE2 or AA were administered to rats between 0930 and 1200. The lowest falls in blood pressure were found when the same doses of the two substances were injected between 0300 and 0500. Mechanisms to explain these circadian variations are suggested.  相似文献   

19.
1. The effect of H2O2 (4.7 × 10-9 4.7 × 10-3M) on prostanoid production by isolated glomeruli from normotensive (WKY) and, spontaneously hypertensive rats (SHR) has been studied.

2. Oxidant stress significantly increased synthesis of prostaglandin E2(PGE2), I2(PGI2)and thromboxane A2 (TxA2) by glomeruli from both strains whereas the ratio (PGE2 + PGI2)/TxA2 increased in only SHR.

3. Pre-incubation of glomeruli with the angiotensin converting enzyme inhibitors captopril or lisinopril, had virtually no effect on H2O2-induced synthesis of individual prostanoids nor on the ratio (PGE2 + PGI2)/TA2 by glomeruli from either WKY or SHR.

4. The findings suggest that H2O2-induced changes in glomerular function may be mediated, in part, by PGs but fail to support the suggestion that the ability of ACEI to protect glomeruli from H2O2-induced damage is determined by PGs.  相似文献   

20.
Effects of the dietary administration of saturated fat and of n-6 and n-3 polyunsaturates on blood pressure, prostaglandin metabolism in small vessels, tissue fatty acid distribution and urinary PGE2 excretion were compared. Rats were divided into three groups. Diets contained 10% hydrogenated cocunut oil (HCO), 10% safflower oil (SFO) or 10% cod liver oil (CLO) added to a basic fat free diet for 10 weeks. Systolic blood pressure was increased in the CLO group animals. Urinary PGE2 excretion was decreased in the HCO and CLO groups as compared to that in the SFO group animals. PGE2, 6-keto-PGF1 and thromboxane (Tx) B2 outflow from isolated perfused mesenteric arterial beds were extremely decreased in the CLO group animals, and to a lesser extent in the HCO group as compared to the SFO animals. In the tissue phospholipid, 20:3n−9/20:4n−6 ratios were increased in the HCO group indicating essential fatty acid deficiency, and n-6 and n-3 polyunsaturates were elevated in the SFO and the CLO group animals respectively. Arachidonic acid concentration was highest in the SFO group, while there was no significant differences between the HCO and the CLO group. These results suggest that dietary fatty acid manipulation effects urinary PGE2 excretion and PGI2, PGE2 and TxA2 synthesis in mesenteric arterial beds and also changes the tissue fatty acid distribution. Furthermore, n-3 polyunsaturates caused an extreme reduction of 2-series PGs synthesis in small resistance vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号