首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleotide sequence of starfish initiator tRNA.   总被引:4,自引:15,他引:4       下载免费PDF全文
The nucleotide sequence of starfish ovary initiator tRNA was determined to be pA-G-C-A-G-A-G-U-m1G-m2G-C-G-C-A-G-U-G-G-A-A-G-C-G-U-G-C-U-G-G-G-C-C-C-A-U-t6A-A-C-C-C-A-G-A-G-m7G-D-m5C-C-G-A-G-G-A-psi-C-G-m1A-A-A-C-C-U-C-G-C-U-C-U-G-C-U-A-C-C-AOH. The sequence was determined by a combination of the two different post-labeling techniques. Two-dimensional cellulose thin-layer chromatography was adopted for analysis of 5'-terminal nucleotides of tRNA fragments produced by formamide treatment. The nucleotide sequence of starfish initiator tRNA is very similar to that of mammalian cytoplasmic initiator tRNAs, but has seven different nucleotide residues and two modifications: residue 55 is psi instead of U, and residue 26 is unmodified G instead of m2G.  相似文献   

2.
The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.  相似文献   

3.
Nucleotide sequence of Streptomyces griseus initiator tRNA.   总被引:4,自引:2,他引:2       下载免费PDF全文
The primary structure of initiator tRNA from Streptomyces griseus was determined by post-labeling procedures. The nucleotide sequence is pC-G-C-G-G-G-G-U-G-G-A-G-C-A-G-C-U-C-G-G-D-A-G-C-U-C-G-C-U-G-G-G-C-U-C-A-U-A-A-C-C- C-A-G-A-G-G-U-C-G-C-A-G-G-U-psi-C-A-m1A-A-U-C-C-U-G-U-C-C-C-C-G-C-U-A-C-C-A0H. The unique feature of the sequence of this tRNA is that residue 54 is occupied by unmodified U, while ribothymidine is located in that position in most initiator tRNAs from eubacteria.  相似文献   

4.
Cytoplasmic initiator tRNAs from plants and fungi possess an unique 2'-phosphoribosyl residue at position 64 of their sequence. In yeast tRNA(iMet), this modified nucleotide located in the T-stem of the tRNA is a 2'-1'-(beta-O-ribofuranosyl-5'-phosphoryl)-adenosine. The phosphoribosyl residue of this modified nucleoside was removed chemically by treatment involving periodate oxidation of tRNA(iMet) and regeneration of the 3'-terminal adenosine with ATP (CTP):tRNA nucleotidyl transferase. The role of phosphoribosylation at position 64 for interaction with elongation factor eEF-1 alpha and initiation factor 2 (eIF-2) was investigated in the homologous yeast system. Whereas the 5'-phosphoribosyl residue prevents the binding of Met-tRNA(iMet) to eEF-1 alpha, it does not influence the interaction with eIF-2. After removal of the ribosyl group, the demodified initiator tRNA showed binding to eEF-1 alpha, but no change was detected with respect to the interaction with the initiation factor eIF-2. This observation is interpreted to mean that a single modification of an eucaryotic initiator tRNA in yeast serves as a negative discriminant for eEF-1 alpha, thus preventing the initiator tRNA(iMet) from entering the elongation cycle of protein biosynthesis.  相似文献   

5.
The nucleotide sequence of initiator tRNA, tRNAfMet, from vitellogenic oocytes of Xenopus laevis was determined. The sequence was deduced from analysis of all T1 and pancreatic oligonucleotides and comparison with the sequence of initiator tRNA from other animal species. At least 80% of all initiator tRNA molecules from oocytes have the same nucleotide sequence. This means that most and probably all initiator tRNA genes which are active in oocytes are identical to one another. No structural difference was observed between liver and oocyte initiator tRNAs. Initiator tRNA from X. laevis has the same nucleotide sequence as initiator tRNA from several species of mammals. The genes coding for this RNA have therefore remained unchanged in the mammalian and amphibian lines for at least 300000000 years.  相似文献   

6.
Nucleotide sequence of a lysine tRNA from Bacillus subtilis.   总被引:2,自引:5,他引:2       下载免费PDF全文
A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG.  相似文献   

7.
Transfer RNA (m7G46) methyltransferase catalyzes the methyl transfer from S-adenosylmethionine to N7 atom of the guanine 46 residue in tRNA. Analysis of the Aquifex aeolicus genome revealed one candidate open reading frame, aq065, encoding this gene. The aq065 protein was expressed in Escherichia coli and purified to homogeneity on 15% SDS-polyacrylamide gel electrophoresis. Although the overall amino acid sequence of the aq065 protein differs considerably from that of E. coli YggH, the purified aq065 protein possessed a tRNA (m7G46) methyltransferase activity. The modified nucleoside and its location were determined by liquid chromatography-mass spectroscopy. To clarify the RNA recognition mechanism of the enzyme, we investigated the methyl transfer activity to 28 variants of yeast tRNAPhe and E. coli tRNAThr. It was confirmed that 5'-leader and 3'-trailer RNAs of tRNA precursor are not required for the methyl transfer. We found that the enzyme specificity was critically dependent on the size of the variable loop. Experiments using truncated variants showed that the variable loop sequence inserted between two stems is recognized as a substrate, and the most important recognition site is contained within the T stem. These results indicate that the L-shaped tRNA structure is not required for methyl acceptance activity. It was also found that nucleotide substitutions around G46 in three-dimensional core decrease the activity.  相似文献   

8.
9.
Non-initiator methionine tRNA (tRNAMet) was purified from Bacillus subtilis W 168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be p-G-G-C-G-G-U-G-U-A-G-C-U-C-A-G-C-G-G-C-D-A-G-A-G-C-G-U-A-C-G-G-U-U-C-A-U-m6A-C-C-C -G-U-G-A-G-G(m7G)-U(D)-C-G-G-G-G-G-T-psi-C-G-A-U-C-C-C-C-U-C-C-G-C-C-G-C-U-A-C- C-A-OH. The nucleosides of G46 and U47 were partially modified to m7G and D, respectively. The nucleotide sequence shows a unique feature that the position adjacent to 3'-end of the anticodon C-A-U is occupied by m6A, not by t6A, although the tRNAMet belongs to a groups of tRNAs which recognize codons starting with A.  相似文献   

10.
The nucleotide sequence of a cytoplasmic tRNAPhe from the eukaryotic green alga Scenedesmus obliquus was determined as: pG-G-C-U-U-G-A-U-A-m2G-C-U-C-A-G-C-D-Gm-G-G-A-G-A-G-C-m22G-p si-psi-A-G-A-Cm-U-G - A-A-m1G-A-psi-C-U-A-C-A-G-m7G-N-m5C-C-C-C-A-G-T-psi-C-G-m1A-U-m5C-Cm-U-G -G-G-U- C A-G-G-C-C-A-C-C-A-OH. The structure has some notable features. Unlike other tRNAPhe species from plant sources, it has an unmodified G as the first residue of the anticodon and m1G rather than a Y derivative as the residue following the anticodon. The sequence m5C(60)-Cm(61) is unique to this tRNA. The sequence of S. obliquus tRNAPhe shows close homology with S. obliquus tRNATyr.  相似文献   

11.
The major species of the formylatable methionine tRNA from Mycoplasma mycoides var capri has been purified. The 5'- and 3'-terminal sequences of the purified tRNA are pC-G- and C-A-A-C-C-AOH, respectively. Thus, this tRNA also contains the unique structural feature found in two other prokaryotic initiator tRNAs in that the first nucleotide at the 5'-end cannot form a Watson-Crick type of base-pair to the fifth nucleotide from the 3'-end. The Mycoplasma tRNA does not contain ribothymidine; however, a specific uridine residue in the sequence G-U-psi-C-G- can be enzymatically methylated by E. coli extracts to yield G-T-psi-C-G. Since ribothymidine is absent in crude tRNA from this strain of Mycoplasma, the absence of T is probably due to the lack of a U yields T modifying enzyme.  相似文献   

12.
A 7-methylguanine (m7G) specific tRNA methyltransferase from E. coli MRE 600 was purified about 1000 fold by affinity chromatography on Sepharose bound with normal E. coli tRNA. The purified enzyme catalyzes exclusively the formation of m7G in submethylated bulk tRNA of E. coli K12 met- rel-. The purified enzyme transfers the methyl group from S-adenosyl-methionine to initiator tRNA of B. subtilis and 0.8 moles m7G residues are formed per mole tRNA. It is suggested that the enzyme specifically recognizes the extra arm unpaired guanylate residue.  相似文献   

13.
Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5′ terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from the 3′ end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence -TΨCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or Ψ)CG-as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56–60%) than to eucaryotic cytoplasmic initiator tRNAs (45–51%).  相似文献   

14.
The primary sequence of wheat germ initiator tRNA has been determined using in vitro labelling techniques. The sequence is: pAUCAGAGUm1Gm2GCGCAG CGGAAGCGUm2GG psi GGGCCCAUt6AACCCACAGm7GDm5Cm5CCAGGA psi CGm1AAACCUG*GCUCUGAUACCAOH. As in other eukaryotic initiator tRNAs, the sequence -T psi CG(A)- present in loop IV of virtually all tRNA active in protein synthesis is absent and is replaced by -A psi CG-. The base pair G2:C71 present in all other initiator tRNAs recognized by E. coli Met-tRNA transformylase is absent and is replaced by U2:A71. Since wheat germ initiator tRNA is not formylated by E. coli Met-tRNA transformylase this implies a possible role of the G2:C71 base pair present in other initiator tRNAs in formylation of initiator tRNA species.  相似文献   

15.
Two methionine transfer RNA (tRNA) genes were identified in the maize mitochondrial genome by nucleotide sequence analysis. One tRNA gene was similar in nucleotide sequence and secondary structure to the initiator methionine tRNA genes of eubacteria and higher plant chloroplast genomes. This tRNA gene also had extensive nucleotide homology (99%) with an initiator methionine tRNA gene described for the wheat mitochondrial genome. The other methionine tRNA gene sequence was distinct and more closely resembled an elongator methionine tRNA.  相似文献   

16.
17.
18.
Cytoplasmic initiator tRNA from human placenta has been purified. The nucleotide sequence of this tRNA has been determined and found identical to that of initiator tRNA from mammalian cytoplasm.  相似文献   

19.
The unknown modified nucleotide G*, isolated from both Schizosaccharomyces pombe and Torulopsis utilis initiator tRNAs(Met), has been identified as an O-ribosyl-(1"----2')-guanosine-5"-phosphate, called Gr(p), by means of HPLC, UV-absorption, mass spectrometry and periodate oxidation procedures. By comparison with the previously published structure of Ar(p) isolated from Saccharomyces cerevisiae initiator tRNA(Met), the (1"----2')-glycosidic bond in Gr(p) has been postulated to have a beta-spatial conformation. The modified nucleotide Gr(p) is located at position 64 in the tRNA(Met) molecules, i.e. at the same position as Ar(p). Since we have also characterized Gr(p) in Candida albicans initiator tRNA(Met), the phosphoribosylation of purine 64 can be considered as a constant nucleotide modification in the cytoplasmic initiator tRNAs(Met) of all yeast species so far sequenced. Precise evidence for the presence of Gr(p) in initiator tRNAs(Met) of several plants is also reported.  相似文献   

20.
The nucleotide sequence of formylmethionine tRNA from an extreme thermophile, Thermus thermophilus HB8, was determined by a combination of classical methods using unlabeled samples to determine the sequences of the oligonucleotides of RNase T1 and RNase A digests and a rapid sequencing gel technique using 5'-32P labeled samples to determine overlapping sequences. Formylmethionine tRNA from T. thermophilus is composed of two species, tRNAf1Met and tRNAf2Met. Their nucleotide sequences are almost identical, and are also almost identical with that of E. coli tRNAfMet, except for slight modifications and replacements. Both species have modifications at three points which do not exist in E. coli tRNAfMet: 2'-O-methylation at G19, N-1-methylation at A59 and 2-thiolation at T55. Moreover U51 in E. coli tRNAfMet is replaced by C51 in both species, so that a G-C pair is formed between this C51 and G65. tRNAf2Met has a reversed G-C pair at positions 52 and 64 compared with those in tRNAf1Met and E. coli tRNAfMet. Other regions are mostly the same as those in all prokaryotic initiator tRNAs so far reported. The thermostability of these thermophile initiator tRNAs is discussed in relation to their unique modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号