首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ontogenetic changes in the organization and volume fraction of collagenous connective tissues were examined in the mantle of Sepioteuthis lessoniana, the oval squid. Outer tunic fiber angle (the angle of a tunic collagen fiber relative to the long axis of the squid) decreased from 33.5 degrees in newly hatched animals to 17.7 degrees in the largest animals studied. The arrangement of intramuscular collagen fiber systems 1 (IM-1) and 2 (IM-2) also changed significantly during ontogeny. Because of the oblique trajectory of the IM-1 collagen fibers, two fiber angles were needed to describe their organization: (1) IM-1(SAG), the angle of an IM-1 collagen fiber relative to the squid's long axis when viewed from a sagittal plane and (2) IM-1(TAN), the angle of an IM-1 collagen fiber relative to the squid's long axis when viewed from a plane tangential to the outer curvature of the mantle. The sagittal component (IM-1(SAG)) of the IM-1 collagen fiber angle was lowest in hatchling squid (32.7 degrees ) and increased exponentially during growth to 43 degrees in squid with a dorsal mantle length (DML) of 15 mm. In squid larger than 15 mm DML, IM-1(SAG) fiber angle did not change. The tangential component (IM-1(TAN)) of IM-1 collagen fiber angle was highest in hatchling squid (39 degrees ) and decreased to 32 degrees in the largest squid examined. IM-2 collagen fiber angle (the angle of an IM-2 collagen fiber relative to the outer surface of the mantle) was lowest in hatchling squid (34.6 degrees ) and increased exponentially to about 50 degrees in 15-mm DML animals. In squid larger than 15 mm DML, IM-2 fiber angle increased slightly with size. The volume fraction of collagen in IM-1 and IM-2 increased 68 and 36 times, respectively, during growth. The ontogenetic changes in the organization of collagen fibers in the outer tunic, IM-1, and IM-2 may lead to ontogenetic differences in the kinematics of mantle movement and in elastic energy storage during jet locomotion.  相似文献   

2.
Spermatophores in a squid, Todarodes pacificus, were observed by light and electron microscopy and were further analyzed by X-ray microanalysis (XMA) of frozen thin sections. Each spermatophore consists of a sperm mass, a cement body, an ejaculatory apparatus, and some fluid materials, all of which are covered by an outer tunic. The outer tunic consists of about 20 membranous layers, each containing straight, parallel microgrooves. Each layer's microgroove pattern is roughly in an orthogonal arrangement with respect to the next layer's pattern. The sperm mass, which is the only cellular component, consists of a sperm rope which is coiled more than 500 times. Most of the spermatozoa in the rope are arranged regularly and are enveloped in materials which are well-stained by Alcian blue. The cement body is located between the sperm mass and ejaculatory apparatus and has a hard outer shell with an arrowhead-like structure, presumably for penetration into the tissue of the female. Calcium and phosphorus are present in the shell of the cement body, which also has an affinity for alizarin red. The ejaculatory apparatus consists of two tubes, designated as the inner tunic and the inner membrane. After the spermatophoric reaction, a sperm reservoir is formed at the anterior end of the extruded and inverted ejaculatory apparatus. The sperm reservoir, which encases the sperm mass, is composed of the cement body at the anterior end and the inner tunic of the ejaculatory apparatus at the posterior end.  相似文献   

3.
The most abundant intramuscular connective tissue component, the perimysium, of bovine M. sternomandibularis muscle was shown to be a crossed-ply arrangement of crimped collagen fibres which reorientate and decrimp on changing muscle fibre sarcomere length. Reorientation of perimysial strands was observed by light microscopy and identification of these strands as collagen fibres was confirmed by high-angle X-ray diffraction. Mean collagen fibre direction with respect to the muscle fibres ranged from approximately 80 degrees at sarcomere length = 1.1 micron to approximately 20 degrees at 3.9 microns. This behaviour was well described by a model of a crimped planar network surrounding a muscle fibre bundle of constant volume but varying length. Modelling of the mechanical properties of the perimysium at different sarcomere lengths produced a load-sarcomere length curve which was in good agreement with the passive elastic properties of the muscle, especially at long sarcomere lengths. It is concluded that the role of the perimysial collagen network is to prevent over-stretching of the muscle fibre bundles.  相似文献   

4.
Cell distribution and tunic morphology in the ascidian Styela canopus were examined by electron microscopy. The observations showed that the outer covering is composed of a thin sinuous cuticle with several protrusions and a deep layer of ground substance. The fibrous component and its arrangement in the tunic were demonstrated: elementary fibrils exhibit a 'microtubular' structure and an elliptical cross-sectional shape. Four types of cells were described: clear vesicular tunic granulocytes, tunic microgranulocytes, unilocular tunic granulocytes, and globular tunic granulocytes. Morphofunctional aspects of the tunic tissue and certain phylogenetic relationships are discussed.  相似文献   

5.
Acute effects of intramuscular aponeurotomy on muscle force and geometry as a function to muscle length were studied in rat m. gastrocnemius medialis (GM). Acutely after aponeurotomy, activation of the muscle at increasing lengths (acute trajectory) showed a spontaneous and progressive but patial tearing of the connective tissue interface between the fibres inserting directly proximally and distally to the location of the section. After this the muscle consisted morphologically of a stable proximal and a distal part (post-aponeurotomy). Post-aponeurotomy mean active sarcomere length within fibres of the proximal part was shown to be unaffected. In contrast, mean sarcomere length within the distal part was reduced substantially after aponeurotomy. However active sarcomeres in the distal part were still attaining higher lengths with increasing muscle lengths (p<0.005), indicating myofascial force transmission through the intact part of the connective tissue interface of the muscle parts. Post-aponeurotomy optimum muscle force was reduced substantially to less than 45% of pre-aponeurotomy values. During the acute trajectory the muscle yielded approximately 20% higher forces than post-aponeurotomy, indicating that myofascial force transmission was related to the area of connective tissue interface. It is concluded that after aponeurotomy of the proximal aponeurosis of rat GM, fibres without direct myotendinous connection to the origin of the muscle are still able to contribute to muscle force. As the magnitude of reduction in muscle force can only be explained partially by the spontaneous rupture of the connective tissue interface between proximal and distal muscle part, other factors causing a decrease of muscle force are present. Clinical implication of acute effects of intramuscular aponeurotomy are discussed.  相似文献   

6.
Structures contributing to force transmission in muscle are reviewed combining some historical and relatively recently published experimental data. Also, effects of aponeurotomy and tenotomy are reviewed shortly as well as some new experimental results regarding these interventions that reinforce the concept of myofascial force transmission. The review is also illustrated by some new images of single muscle fibres from Xenopus Laevis indicative of such transmission and some data about locations of insertion of human gluteus maximus muscle. From this review and the new material, emerges a line of thought indicating that mechanical connections between muscle fibres and intramuscular connective tissue play an important role in force transmission. New experimental observations are presented for non-spanning muscle (i.c., rat biceps femoris muscle), regarding the great variety of types of intramuscular connections that exist i n addition to myo-tendinous junctions at the perimuscular ends of muscle fibres. Such connections are classified as (1) tapered end connections, (2) Myo-myonal junctions, (3) myo-epimysial junctions and (3) Myo-endomysial junctions. This line of thought is followed up by consideration of a possible role of connections of intra- and extramuscular connective tissue in force transmission out of the muscle. Experimental results of an explorative nature, regarding the interactions of extensor digitorum longus (EDL), tibialis anterior (TA) and hallucis longus (HAL) muscles within a relatively intact dorsal flexor compartment of the rat hind leg, indicate that: (1) length force properties of EDL are influenced by TA activity in a length dependent fashion. Depending on TA length, force exerted by EDL, kept at constant origin insertion distance, is variable and the effect is influenced by EDL length itself as well; (2) Force is transmitted from muscle to extramuscular connective tissue and vice versa. As a consequence force exerted at proximal and distal tendons of a muscle are not always equal. The difference being transmitted by extramuscular connective tissue and may appear at the tendons of other muscles or may be transmitted via connective tissue directly to bone. It is concluded that the system of force transmission from skeletal muscle should be considered as a multiple system.  相似文献   

7.
Mantle muscle tissue of Idiosepius pygmaeus was examined to describe changes in structure and organization associated with growth. Growth in I. pygmaeus|DD was a function of both an increase in muscle fibre number and fibre size within muscle blocks. Continuous fibre production over the observed life span of I. pygmaeus was indicated by the presence of very small muscle fibres (< 1.0 μm in diameter) in substantial proportions in all sizes of individuals. Muscle blocks became larger as animals increased in size, although new muscle blocks were generated in all sizes of individuals. Mantle muscle fibres had a maximum size of 11 μm. Therefore, for an individual to continue increasing muscle block sizes, new fibres must be produced. This is further evidence of continuous fibre production throughout the size range of I. pygmaeus examined. The relative rates of muscle fibre generation and fibre growth depended on the size of the animal and position along the mantle (anterior, mid or posterior mantle). The predominance of small fibres and blocks at the anterior end of the mantle suggested that this was the primary growth region. Mitochondriapoor and mitochondria-rich muscle fibres from small individuals had much larger mitochondrial cores than muscle fibres from larger animals. Changes in the muscle structure are discussed with respect to the metabolic and energetic requirements of I. pygmaeus , and how these may change with growth.  相似文献   

8.
The cylindrical shape of soft-bodied invertebrates is well suited to functions in skeletal support and locomotion, but may result in a previously unrecognized cost—large non-uniformities in muscle strain and strain rate among the circular muscle fibres of the body wall. We investigated such gradients of strain and strain rate in the mantle of eight long-finned squid Doryteuthis pealeii and two oval squid Sepioteuthis lessoniana. Transmural gradients of circumferential strain were present during all jets (n = 312); i.e. for a given change in the circumference of the outer surface of the mantle, the inner surface experienced a greater proportional change. The magnitude of the difference increased with the amplitude of the mantle movement, with circular muscle fibres at the inner surface of the mantle experiencing a total range of strains up to 1.45 times greater than fibres at the outer surface during vigorous jets. Differences in strain rate between the circular fibres near the inner versus the outer surface of the mantle were also present in all jets, with the greatest differences occurring during vigorous jetting. The transmural gradients of circumferential strain and strain rate we describe probably apply not only to squids and other coleoid cephalopods, but also to diverse soft-bodied invertebrates with hollow cylindrical or conical bodies and muscular organs.  相似文献   

9.
The squid mantle is a complex structure which, in conjunction with a highly sensitive sensory system, provides squid with a wide variety of highly controlled movements. This article presents a model describing systems of collagen fibers that give the mantle its shape and mechanical properties. The validity of the model is verified by comparing predicted optimal fiber angles to actual fiber angles seen in squid mantle. The model predicts optimal configurations for multiple fiber systems. It is found that the tunic fibers (outer collagen layers) provide optimal jetting characteristics when oriented at 31°, which matches empirical data from previous studies. The model also predicted that a set of intramuscular fibers (IM‐1) are oriented relative to the longitudinal axis to provide optimal energy storage capacity within the limiting physical bounds of the collagen fibers themselves. In addition, reasons for deviations from the predicted values are analyzed. This study illustrates how the squid's reinforcing collagen fibers are aligned to provide several locomotory advantages and demonstrates how this complex biological process can be accurately modeled with several simplifying assumptions. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
In a previous paper, cellulose fibres were demonstrated in the larval, the metamorphosing, and the juvenile tunics. In this paper we used cytochemical methods and X-ray microanalysis to obtain additional information on tunic morphogenesis in Halocynthia papillosa. The chemical composition of the tunic evolves with its structural complexity. The larval and juvenile fibres are shown to be structurally and chemically different. While neither proteins nor glycosaminoglycans seem to be associated with the larval fibres, the juvenile fibres consist of a cellulose core wrapped in a sheath of tannophilic proteins. Patches of glycosaminoglycans line their longitudinal axes. In the course of metamorphosis, the cuticle undergoes profound modifications in regions of spine morphogenesis. Granular material that was previously called fibro-granular material (Lübbering et al., 1993) is essential to the formation of cuticular plates and spines. During metamorphosis, this material accumulates in epidermal granules and is discharged into the tunic. It crosses the fundamental layer of the tunic and reaches the cuticle. Our results strongly suggest that this material consists of proteins rich in cysteine and hydrophobic amino acids.  相似文献   

11.
The fine structure of the shell and underlying mantle in young juveniles of the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The first shell produced by the mantle consists of a nonhinged protegulum that lacks concentric growth lines. The protegulum is secreted within a day after larval metamorphosis and typically measures 140-150 micron long. A thin organic periostracum constitutes the outer layer of the protegulum, and finely granular shell material occurs beneath the periostracum. Protegula resist digestion in sodium hypochlorite and are refractory to sectioning, suggesting that the subperiostracal portion of the primordial shell is mineralized. The juvenile shell at 4 days postmetamorphosis possesses incomplete sockets and rudimentary teeth that consist of nonfibrous material. The secondary layer occuring in the inner part of the juvenile shell contains imbricated fibers, whereas the outer portion of the shell comprises a bipartite periostracum and an underlying primary layer of nonfibrous shell. Deposition of the periostracum takes place within a slot that is situated between the so-called lobate and vesicular cells of the outer mantle lobe. Vesicular cells deposit the basal layer of the periostracum, while lobate cells contribute materials to the overlying periostracal superstructure. Cells with numerous tonofibrils and hemidesmosomes differentiate in the outer mantle epithelium at sites of muscle attachments, and unbranched punctae that surround mantle caeca develop throughout the subperiostracal portion of the shell. Three weeks after metamorphosis, the juvenile shell averages about 320 micron in length and is similar in ultrastructure to the shells secreted by adult articulates.  相似文献   

12.
The fine structure of the mantle and shell of the barnacle, Elminius modestus Darwin has been examined by electron microscopy. The epithelial cells along the outer face of the mantle differ in size, shape, and organelle complexity according to the different components of the shell they secrete. The shell consists of a non-calcareous basis and calcareous mural and opercular plates which are connected by a flexible opercular hinge. Both the basis and opercular hinge are composed of two main units: an outer cuticulin layer and a lamellate component of well ordered arched fibrils. During the deposition of the latter structures morphological changes in the cells occur which may be correlated with the moulting cycle. Preliminary results show that the calcareous plates are covered by an outer epicuticle, which is bordered by a cuticulin layer; the inner calcareous component, consists of an orderly arrangement of organic matrix envelopes within which crystals may be initiated.

The cells lining the inner surface of the mantle are uniform in appearance with a thin cuticle at their free surface which lines the body cavity. The latter structure of the cuticle and manner of its deposition are similar to those of the basis and opercular hinge. Separating the outer and inner mantle epithelial cells is connective tissue which comprises several differing cell types. The possibilities are discussed of the rôle these cells may play in shell deposition. The modes by which underlying cells secrete the different shell components and the cuticle lining the inner face of the mantle, are also discussed.  相似文献   


13.
Gabella  Giorgio 《Brain Cell Biology》2001,30(9-10):733-766
The fine structure of taenia coli was studied by electron microscopy in guinea-pigs from birth to old age (over 2 years old). Smooth muscle cells are ~1,000 μm3 in volume at birth, 2,200 μm3 in young adults and 4,500 μm3 in old age. Muscle growth and muscle cell enlargement continue throughout life, an increase in muscle volume of about 240 times. Differentiated muscle cells divide during development and in adults. Because mitoses are found in any part of the muscle, the tissue grows from within, rather than by addition at the ends or borders. There is progressive increase in nucleus volume, and decrease in surface-to-volume ratio and in nucleus-cell volume ratio in muscle cells. At all ages the taenia consists of a uniform population of muscle cells (apart from dividing cells); there are no undifferentiated cells, no precursor cells or myoblasts, and no degenerating cells. Interstitial cells and fibroblasts are observed at all ages with only small variations in relative number. The amount of intramuscular collagen increases in old age. There is roughly one capillary for every 170 muscle cell profiles at birth, and one for every 200 in adults and in old age. The innervation is dense and reaches all parts of the muscle. In adults there are ~1,300 axons per 10,000 μm2 of sectional area, or between 8,000 and 38,000 axons in a full cross section of taenia; this amounts to ~2% of the muscle volume. An answer to the question of why there are so many nerves in the taenia was not found. Expanded axon profiles are part of typical varicose fibres. Varicosities are packed with small clear vesicles and lie at the surface of nerve bundles. Absence of strong, constant patterns indicating specialized contacts of the nerve terminals is a feature of these nerves at all ages. Some varicosities are closest to interstitial cells; more commonly they are close to muscle cells at sites that strongly suggest a neuro-muscular junction. The additional possibility that some varicosities are part of afferent fibres is discussed. The innervation is well developed at birth and the highest density of innervation is found around day 4 when 4% of the taenia consists of nervous tissue. The innervation of immature taenia is characterized by close juxtaposition of axons and muscle cells. Axon profiles packed with vesicles, varicosities and presumptive neuro-muscular junctions are present at birth. The extent of Schwann cells in intramuscular nerves is markedly less than in adults, and virtually all the axons have maximal membrane-to-membrane contact with other axons. In taenia of aged guinea-pigs, the density of innervation is reduced. There is no actual loss of nerve tissue; the total amount of nerve tissue is greater than in young adults, and the apparent reduction reflects a more intense growth of muscle cells. The Schwann cell component becomes more conspicuous than in young adults and there is a greater number of axons fully wrapped by a Schwann cell. Presumptive neuro-muscular junctions are common and probably commoner than in young adults. Growth of muscle cells, changes in their cytological features and in the stroma occur throughout life, including old age. Nerves too continue to grow and undergo structural changes in pattern of distribution, relation with Schwann cells and effector cells.  相似文献   

14.
Shell-anchored muscles that extend into the cephalopodium of five species of planktotrophic nudibranch larvae were studied by ultrastructural examination of sequential larval developmental stages. All species, regardless of larval shell type (inflated or non-inflated), showed a similar basic pattern of shell muscles. The larval retractor muscle (LRM) differentiates prior to hatching and its fibres insert on epithelia of the velum, apical plate, stomodeal region, or mantle fold. Many fibres also connect with subepithelial intrinsic muscles of the cephalopodium. Most but not all LRM fibres Project to left-sided targets and are innervated from the left cerebral ganglion. Two pedal muscles, which are innervated from the pedal ganglia, differentiate during the post-hatching larval stage and both insert primarily on pedal epithelium attached to the operculum. The left pedal muscle is anchored to the shell immediately adjacent to the attachment plaque of the LRM and consists of basal and distal tiers of muscle cells. The right pedal muscle arises on the ventral rim of the shell aperture and consists of a single tier of muscle cells. Ontogenic changes in larval retraction behaviour correlate with developmental change in the muscle effectors. Although some interspecific differences were noted, the presence of a common ground plan for larval shell muscles in these five species contrasts with previous indications of marked variability for nudibranch larval shell muscles.  相似文献   

15.
In Sepioteuthis lessoniana, the oval squid, ontogenetic changes in the kinematics of the mantle during escape-jet locomotion imply a decline in the relative mass flux of the escape jet and may affect the peak weight-specific thrust of the escape jet. To examine the relationship between ontogenetic changes in the kinematics of the mantle and the thrust generated during the escape jet, we simultaneously measured the peak thrust and the kinematics of the mantle of squid tethered to a force transducer. We tested an ontogenetic series of S. lessoniana that ranged in size from 5 to 40 mm dorsal mantle length (DML). In newly hatched squids, thrust peaked 40 ms after the start of the escape jet and reached a maximum of between 0.10 mN and 0.80 mN. In the largest animals, thrust peaked 70 ms after the start of the escape jet and reached a maximum of between 18 mN and 110 mN. Peak thrust was normalized by the wet weight of the squid and also by the cross-sectional area of the circumferential muscle that provides power for the escape jet. The weight-specific peak thrust of the escape jet averaged 0.36 in newly hatched squid and increased significantly to an average of 1.5 in the largest squids measured (P < 0.01). The thrust per unit area of circumferential muscle averaged 0.25 mN/mm(2) in hatchlings and increased significantly to an average of 1.4 mN/mm(2) in the largest animals tested (P < 0.01). The impulse of the escape jet was also lowest in newly hatched individuals (1.3 mN. s) and increased significantly to 1000 mN. s in the largest squids measured (P < 0.01). These ontogenetic changes in the mechanics of the escape jet suggest (1) that propulsion efficiency of the exhalant phase of the jet is highest in hatchlings, and (2) that the mechanics of the circumferential muscles of the mantle change during growth.  相似文献   

16.
Tunic morphogenesis in embryos of the ascidian Halocynthia roretzi was examined by scanning and transmission electron microscopy. For this purpose it was necessary to modify the classical embedding procedure. Soon after reaching the initial tail-bud stage, tunic deposition is initiated on the dorsal side of the embryo. As soon as the embryo is completely covered by the tunic, larval fins are formed. The test cells settle onto the embryo. At this stage only the outer cuticle and the outer tunic compartment have appeared. Tunic morphogenesis is accompanied by ultrastructural modifications of the epidermis characteristic of secreting cells. Cytochemical investigations reveal polysaccharide glycogen-like material in the lumen of epidermal lacunae and in the outer compartment of the tunic. Our observations strongly suggest that this material is stored in the lacunae and discharged into the outer compartment. The significance of fluffy osmiophilic material that appears at the early tail-bud stage and enlaces the whole embryo is discussed.  相似文献   

17.
The musculature of adult specimens of Cossura pygodactylata was studied by means of F-actin labelling and confocal laser scanning microscopy (CLSM). Their body wall is comprised of five longitudinal muscle bands: two dorsal, two ventral and one ventromedial. Complete circular fibres are found only in the abdominal region, and they are developed only on the border of the segments. Thoracic and posterior body regions contain only transverse fibres ending near the ventral longitudinal bands. Almost-complete rings of transverse muscles, with gaps on the dorsal and ventral sides, surround the terminal part of the pygidium. Four longitudinal bands go to the middle of the prostomium and 5–14 paired dorso-ventral muscle fibres arise in its distal part. Each buccal tentacle contains one thick and two thin longitudinal muscle filaments; thick muscle fibres from all tentacles merge, forming left and right tentacle protractors rooted in the dorsal longitudinal bands of the body wall. The circumbuccal complex includes well-developed upper and lower lips. These lips contain an outer layer of transverse fibres, and the lower lip also contains inner oblique muscles going to the dorsal longitudinal bands. The branchial filament contains two longitudinal muscle fibres that do not connect with the body musculature. The parapodial complex includes strong intersegmental and segmental oblique muscles in the thoracic region only; chaetal retractors, protractors and muscles of the body wall are present in all body regions. Muscle fibres are developed in the dorsal and ventral mesenteries. One semi-circular fibre is developed on the border of each segment and is most likely embedded in the dissepiment. The intestine has thin circular fibres along its full length. The dorsal blood vessel has strong muscle fibres that cover its anterior part, which is called the heart. It consists of short longitudinal elements forming regular rings and inner partitions. The musculature of C. pygodactylata includes some elements that are homologous with similar muscular components in other polychaetes (i.e., the body wall and most parapodial muscles) and several unique features, mostly at the anterior end.  相似文献   

18.
Using confocal laser scanning and conventional light microscopy, the morphology and organization of the muscle fibres in a proprioceptor, the thoracic coxal muscle receptor organ (TCMRO), and the associated 'extrafusal' promotor muscle were investigated in two species of decapod crustacea, the crayfish Cherax destructor and the mud crab Scylla serrata . The diameter of the TCMROs was shown to increase distally, with an increase up to 350% recorded for the crayfish. The tapered shape of the crayfish TCMRO was demonstrated to amplify movements mechanically at the transducer region where the afferent nerves attach. Serial sectioning of the TCMROs, showed that the fibre number increased in the proximal to distal direction from 14 to 30 fibres in the crayfish and from 7 to 20 in the crab. Optical sectioning with the laser scanning confocal microscope revealed that the increase in fibre numbers was the result of muscle fibres branching in the distal third section of the TCMRO. The percentage of muscle tissue in the cross-sectional area in the TCMRO was found to be only 35.2% and 64.6% in the crayfish and crab, respectively. Longitudinal sectioning using laser scanning confocal microscopy revealed the average sarcomere length of the TCMRO muscle fibres of both species to be in the intermediate range for crustacean muscle fibres (4.1 ± 0.1 µm and 4.55 ± 0.34 µm for the crayfish and crab) compared with the long sarcomere muscle fibres in the associated promotor muscles (7.87 ± 0.2 and 10.6 ± 0.6 µm). The distinct morphology of the TCMRO muscle fibres – smaller diameter, intermediate sarcomere length and branching of fibres compared to the larger, long sarcomere promotor fibre muscle fibres – suggest that the TCMRO muscle fibres are specialized in their role of proprioception.  相似文献   

19.
The tunic of Cystodytes dellechiajei (Poly- citoridae), a colony-forming species of the Ascidiacea that contains biologically active alkaloids, was investigated using light microscopy, laser-scanning microscopy and nuclear magnetic resonance techniques. The colonies contain numerous individual zooids, which are embedded in a common tunic. Each zooid is protected by a firm capsule of overlapping calcareous spicules. The colonies lack blood vessels in the tunic, but six morphologically different types of tunic cells were found: pigment cells, bladder cells, vacuolated filopodial cells, granular filopodial cells, morula cells and granular cells. Rod-like bacteria were found in the tunic matrix. Bladder cells and pigment cells could be identified as storage units for acid and pyridoacridine alkaloids, making the tunic inedible and repelling predators. Filopodial cells have long filopodia, which probably are connected to each other. They may be involved in transportation processes within the tunic tissue. The functions of the morula cells and the granular cells are unknown as yet. With its several specialised cells, the tunic of C. dellechiajei represents a dynamic living tissue containing biologically active compounds. Accepted: 20 September 2000  相似文献   

20.
Maturation in the onychoteuthid squid Moroteuthis ingens was found to be irreversible, with death following shortly after sexual maturation and spawning. Both males and females were found with spent gonads. The ovary reaches very large sizes in mature females and probably prevents feeding by constricting the caecum. There was also a marked difference in the tissue integrity between immature females and females which had reached sexual maturity. Mature and spent females showed advanced tissue breakdown with individuals having a thin mantle wall with an inelastic, gelatinous appearance. Histological examination of the mantle wall revealed that the tissue breakdown was due to a drastic histolysis of muscle tissue and, to a lesser extent, collagen fibres. Mature males also showed some tissue breakdown and loss of muscle fibres but this was not as dramatic as in the females. These features are considered in relation to processes contributing to terminal maturation in M. ingens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号