首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Following the success in establishing human induced pluripotent stem (iPS) cells, research into various applications of the cells derived from human iPS cells has begun in earnest. The use of iPS cell-derived cells in clinical therapies is one of the most exciting of the possible applications. However, the risk of tumorigenicity is the biggest potential obstacle to use iPS cell derivatives in the clinic. It should be noted that the human cells used to generate iPS cell lines may have acquired genetic mutations and these might influence the tumorigenicity of the cells. In particular, the cells of older people have a higher risk of genetic mutations than those of younger people. Here, we show that iPS cells could be derived from short-term cultures of neonatal tissues. The established human iPS cells expressed various markers of undifferentiated cells and formed teratoma in immunodeficient mice. The human iPS cells derived from neonatal tissues may represent a clinical material possessing less tumorigenicity.  相似文献   

3.
4.
AIM To investigate genotype variation among induced pluripotent stem cell(iPSC) lines that were clonally generated from heterogeneous colon cancer tissues using next-generation sequencing. METHODS Human iPSC lines were clonally established by selecting independent single colonies expanded from heterogeneous primary cells of S-shaped colon cancer tissues by retroviral gene transfer(OCT3/4, SOX2, and KLF4). The ten iPSC lines, their starting cancer tissues, and the matched adjacent non-cancerous tissues were analyzed using nextgeneration sequencing and bioinformatics analysis using the human reference genome hg19. Non-synonymous single-nucleotide variants(SNVs)(missense, nonsense,and read-through) were identified within the target region of 612 genes related to cancer and the human kinome. All SNVs were annotated using dbS NP135, CCDS, RefSeq, GENCODE, and 1000 Genomes. The SNVs of the iPSC lines were compared with the genotypes of the cancerous and non-cancerous tissues. The putative genotypes were validated using allelic depth and genotype quality. For final confirmation, mutated genotypes were manually curated using the Integrative Genomics Viewer. RESULTS In eight of the ten iPSC lines, one or two non-synonymous SNVs in EIF2AK2, TTN, ULK4, TSSK1 B, FLT4, STK19, STK31, TRRAP, WNK1, PLK1 or PIK3R5 were identified as novel SNVs and were not identical to the genotypes found in the cancer and non-cancerous tissues. This result suggests that the SNVs were de novo or pre-existing mutations that originated from minor populations, such as multifocal pre-cancer(stem) cells or pre-metastatic cancer cells from multiple, different clonal evolutions, present within the heterogeneous cancer tissue. The genotypes of all ten iPSC lines were different from the mutated ERBB2 and MKNK2 genotypes of the cancer tissues and were identical to those of the noncancerous tissues and that found in the human reference genome hg19. Furthermore, two of the ten iPSC lines did not have any confirmed mutated genotypes, despite being derived from cancerous tissue. These results suggest that the traceability and preference of the starting single cells being derived from pre-cancer(stem) cells, stroma cells such as cancer-associated fibroblasts, and immune cells that co-existed in the tissues along with the mature cancer cells.CONCLUSION The genotypes of iPSC lines derived from heterogeneous cancer tissues can provide information on the type of starting cell that the iPSC line was generated from.  相似文献   

5.
Development of the musculoskeletal system requires coordinated formation of distinct types of tissues, including bone, cartilage, muscle, and tendon. Compared to muscle, cartilage, and bone, cellular and molecular bases of tendon development have not been well understood due to the lack of tendon cell lines. The purpose of this study was to establish and characterize tendon cell lines. Three clonal tendon cell lines (TT-E4, TT-G11, and TT-D6) were established using transgenic mice harboring a temperature-sensitive mutant of SV40 large T antigen. Proliferation of these cells was significantly enhanced by treatment with bFGF and TGF-beta but not BMP2. Tendon phenotype-related genes such as those encoding scleraxis, Six1, EphA4, COMP, and type I collagen were expressed in these tendon cell clones. In addition to tendon phenotype-related genes, expression of osteopontin and Cbfal was observed. These clonal cell lines formed hard fibrous connective tissue when implanted onto chorioallantoic membrane in ovo. Furthermore, these cells also formed tendon-like tissues when they were implanted into defects made in patella tendon in mice. As these tendon cell lines also produced fibrocartilaginous tissues in tendon defect implantation experiments, mesenchymal stem cell properties were examined. Interestingly, these cells expressed genes related to osteogenic, chondrogenic, and adipogenic lineages at low levels when examined by RT-PCR. TT-G11 and TT-E4 cells differentiated into either osteoblasts or adipocytes, respectively, when they were cultured in cognate differentiation medium. These observations indicated that the established tendon cell line possesses mesenchymal stem cell-like properties, suggesting the existence of mesenchymal stem cell in tendon tissue.  相似文献   

6.
Establishment of pluripotent cell lines from porcine preimplantation embryos   总被引:11,自引:0,他引:11  
Embryonic stem (ES) cells are pluripotent cells isolated from in vitro culture of preimplantation embryos. Experiments were undertaken to identify preimplantation embryonic stages and culture conditions under which pluripotent, porcine embryo-derived cell lines could be isolated. Cell lines were established from in vitro culture of intact, porcine early hatched blastocysts and isolated inner cell masses (ICM) from intermediate and late hatched blastocysts on feeder layers prepared from permanent mouse embryonic fibroblasts (STO). The cells of these porcine embryo-derived cell lines had a morphology similar to that of murine ES cells, but colony morphology was more epithelial-like. The cell lines retained a normal diploid karyotype, consistently expressed alkaline phosphatase activity, and survived cryopreservation. When subjected to in vitro differentiation, either spontaneous or induced, the embryo-derived cell lines differentiated extensively into a wide range of cell types representing the 3 embryonic germ layers. In vivo pluripotency of the cells was demonstrated by birth of a chimeric piglet, documented by pigmentation and DNA markers, and the ability to direct the development of nuclear-transfer embryos to the blastocyst stage. Such pluripotent embryo-derived cells provide a potential route for porcine genetic manipulation.  相似文献   

7.
Han X  Han J  Ding F  Cao S  Lim SS  Dai Y  Zhang R  Zhang Y  Lim B  Li N 《Cell research》2011,21(10):1509-1512
  相似文献   

8.
Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC--including induced pluripotent--lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation.  相似文献   

9.
There are two critical stages in the retroviral reprogramming of somatic cells to produce human induced pluripotent stem cell (hiPSC) lines. One is the production of high titer virus required to reprogram somatic cells; the other is identification of true hiPSC colonies from heterogeneous cell populations, and their isolation and expansion to generate a sustainable, pluripotent stem cell line. Here we describe simple, time-saving methods to address the current difficulties at these two critical junctures. First, we have developed a method to increase the number of infectious viral units 600-fold. Second, we have developed a TRA-1-81-based positive selection column method for isolating “true” hiPSCs from the heterogeneous cell populations, which overcomes the labor-intensive and highly subjective method of manual selection of hiPSC colonies. We have used these techniques to produce 8 hiPSC lines from human fibroblasts and we believe that they are of considerable utility to researchers in the hiPSC field.  相似文献   

10.
11.
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate into all somatic cells and tissue lines. They can be genetically manipulated in vitro by knocking genes in or out, and therefore serve as an excellent tool for gene function studies and for the generation of models for some human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, many attempts have been made to generate pluripotent stem cell lines from other species. Comparative characterization of ESCs from different species would help us to understand differences and similarities in the signaling pathways involved in the maintenance of pluripotency and the initiation of differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved across different species. This report gives an overview of research into embryonic and induced pluripotent stem cells in the rabbit, an important nonrodent species with considerable merits as an animal model for specific diseases. A number of putative rabbit ESC and induced pluripotent stem cell lines have been described. All of them expressed stem cell-associated markers and maintained apparent pluripotency during multiple passages in vitro, but none have been convincingly proven to be fully pluripotent in vivo. Moreover, as in other domestic species, the markers currently used to characterize the putative rabbit ESCs are suboptimal because recent studies have revealed that they are not always specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a validated panel of molecular markers specific to pluripotent cells of the developing rabbit embryos. Using rabbit-specific pluripotency genes may improve the efficiency of somatic cell reprogramming for generating induced pluripotent stem cells and thereby overcome some of the challenges limiting the potential of this technology.  相似文献   

12.
Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.  相似文献   

13.
The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>10(16)) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.  相似文献   

14.

Background

The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca2+-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs).

Methodology/Principal Findings

RT-PCR and immunocytochemistry experiments identified the expression of key Ca2+-handling proteins. Detailed laser confocal Ca2+ imaging demonstrated spontaneous whole-cell [Ca2+]i transients. These transients required Ca2+ influx via L-type Ca2+ channels, as demonstrated by their elimination in the absence of extracellular Ca2+ or by administration of the L-type Ca2+ channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca2+ store, contributing to [Ca2+]i transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca2+) and ryanodine (decreasing [Ca2+]i). Similarly, the importance of Ca2+ reuptake into the SR via the SR Ca2+ ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca2+]i transients elimination. Finally, the presence of an IP3-releasable Ca2+ pool in hiPSC-CMs and its contribution to whole-cell [Ca2+]i transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phosopholipase C inhibitor U73122.

Conclusions/Significance

Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca2+ store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca2+]i transients in hiPSC-CMs on both sarcolemmal Ca2+ entry via L-type Ca2+ channels and intracellular store Ca2+ release.  相似文献   

15.
Induced pluripotent stem(iPS) cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs) are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cell...  相似文献   

16.
人胚胎干细胞建系和鉴定   总被引:1,自引:0,他引:1  
孙博文 《生命科学》2003,15(4):207-210
人胚胎干细胞是一种取自人囊胚内细胞团且具有形成所有三个胚层细胞能力的全能细胞。建立一个理想的人胚胎干细胞培养系统是研究和利用这种具有巨大潜力细胞的首要条件。本文讨论了目前建立的人胚胎干细胞培养系统,阐述了其有利的和不利的一面,并着重讨论其体外培养方法和鉴定策略。  相似文献   

17.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

18.
Summary. Small GTP-binding proteins of the Rho family (RhoA, Cdc42, Rac1) regulate the organisation and the turnover of the cell’s cytoskeleton and adhesion structures. A significant function of these cellular structures is to translate and counterbalance forces applied to, or generated by, cells in order to maintain homeostasis and control cell movement. We therefore hypothesised that Rho-GTPases are directly involved in cellular gravity perception and may participate in the alterations induced in microgravity. To define an adequate cellular model allowing to investigate this issue, we have established stable cell lines constitutively expressing active forms of either RhoA, Cdc42, or Rac1. The three cell lines differ by morphology and by their ability to form filopodia, lamellipodia, and bundles of actin stress fibers. Overexpression of the active form of either RhoA, Cdc42, or Rac1 is compatible with cell viability and does not affect cell population doubling time. Thus, our series of mutant cells appear well suited to gain further knowledge on the molecular mechanisms of cellular gravity perception. Correspondence and reprints: Institute for Biochemistry II, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Federal Republic of Germany.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号