首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of group III metabotropic glutamate receptors (mGluRs) in photoreceptor-H1 horizontal cell (HC) synaptic transmission was investigated by analyzing the rate of occurrence and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in H1 HCs uncoupled by dopamine in carp retinal slices. Red light steps or the application of 100 microM cobalt reduced the sEPSC rate without affecting their peak amplitude, which is consistent with hyperpolarization or the suppression of Ca(2+) entry into cone synaptic terminals reducing vesicular transmitter release. Conversely, postsynaptic blockade of H1 HC AMPA receptors by 500 nM CNQX reduced the amplitude of sEPSCs without affecting their rate. This analysis of sEPSCs represents a novel methodology for distinguishing between presynaptic and postsynaptic sites of action. The selective agonist for group III mGluRs, l-2-amino-4-phosphonobutyrate (L-APB or L-AP4; 20 microM), reduced the sEPSC rate with a slight reduction in amplitude, which is consistent with a presynaptic action on cone synaptic terminals to reduce transmitter release. During L-APB application, recovery of sEPSC rate occurred with 500 microM (s)-2-methyl-2-amino-4-phosphonobutyrate (MAP4), a selective antagonist of group III mGluR, and with 200 microM 4-aminopyridine (4-AP), a blocker of voltage-dependent potassium channels. Whole-cell recordings from cones in the retinal slice showed no effect of L-APB on voltage-activated Ca(2+) conductance. These results suggest that the activation of group III mGluRs suppresses transmitter release from cone presynaptic terminals via a 4-AP-sensitive pathway. Negative feedback, operating via mGluR autoreceptors, may limit excessive glutamate release from cone synaptic terminals.  相似文献   

2.
Feedback from horizontal cells (HCs) to cone photoreceptors plays a key role in the center-surround-receptive field organization of retinal neurons. Recordings from cone photoreceptors in newt retinal slices were obtained by the whole-cell patch-clamp technique, using a superfusate containing a GABA antagonist (100 microM picrotoxin). Surround illumination of the receptive field increased the voltage-dependent calcium current (ICa) in the cones, and shifted the activation voltage of ICa to negative voltages. External alkalinization also increased cone ICa and shifted its activation voltage toward negative voltages. Enrichment of the pH buffering capacity of the extracellular solution increased cone ICa, and blocked any additional increase in cone ICa by surround illumination. Hyperpolarization of the HCs by a glutamate receptor antagonist-augmented cone ICa, whereas depolarization of the HCs by kainate suppressed cone ICa. From these results, we propose the hypothesis that pH changes in the synaptic clefts, which are intimately related to the membrane voltage of the HCs, mediate the feedback from the HCs to cone photoreceptors. The feedback mediated by pH changes in the synaptic cleft may serve as an additional mechanism for the center-surround organization of the receptive field in the outer retina.  相似文献   

3.
The primary feedback control apparatus in the outer retina is the sign-inverting feedback synapse between horizontal cells and cones. In many lower vertebrates horizontal cells release GABA in darkness, which opens Cl- channels in cones. Input-output relations of the feedback synapse reveal that the synaptic gain is light-dependent with the highest negative gain near the dark horizontal cell potential. The horizontal cell-cone feedback synapse improves the reliability of the photoreceptor output synapses. It also modulates the dynamic range and mediates color opponency and surround responses in second-order retinal neurons.  相似文献   

4.
Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or dihydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R-and G-cones to LHCs, respectively.  相似文献   

5.
Although alkaline pH is known to trigger Ca(2+) influx in diverse cells, no pH-sensitive Ca(2+) channel has been identified. Here, we report that extracellular alkalinization induces opening of connexin 43 hemichannels (Cx43 HCs). Increasing extracellular pH from 7.4 to 8.5, in the presence of physiological Ca(2+)/Mg(2+) concentrations, rapidly increased the ethidium uptake rate and open probability of HCs in Cx43 and Cx43EGFP HeLa transfectants (HeLa-Cx3 and HeLa-Cx43EGFP, respectively) but not in parental HeLa cells (HeLa-parental) lacking Cx43 HCs. The increase in ethidium uptake induced by pH 8.5 was not affected by raising the extracellular Ca(2+) concentration from 1.8 to 10 mM but was inhibited by a connexin HC inhibitor (La(3+)). Probenecid, a pannexin HC blocker, had no effect. Extracellular alkalinization increased the intracellular Ca(2+) levels only in cells expressing HCs. The above changes induced by extracellular alkalinization did not change the cellular distribution of Cx43, suggesting that HC activation occurs through a gating mechanism. Experiments on cells expressing a COOH-terminal truncated Cx43 mutant indicated that the effects of alkalinization on intracellular Ca(2+) and ethidium uptake did not depend on the Cx43 C terminus. Moreover, purified dephosphorylated Cx43 HCs reconstituted in liposomes were Ca(2+) permeable, suggesting that Ca(2+) influx through Cx43 HCs could account for the elevation in intracellular Ca(2+) elicited by extracellular alkalinization. These studies identify a membrane pathway for Ca(2+) influx and provide a potential explanation for the activation of cellular events induced by extracellular alkalinization.  相似文献   

6.
Intracellular recordings were made from luminosity-type horizontal cells (LHCs) in the isolated superfused carp retina and the effect of AMPA (α-amino-3-hydroxy-5-methylisoxa-zole-4-propionic acid), a glutamate receptor agonist, on these cells was studied. AMPA suppressed the responses of LHCs driven by red-sensitive (R-) cones whereas it potentiated the responses driven by green-sensitive (G-) cones. The AMPA effect could be completely blocked by GYKI 53655, a specific AMPA receptor antagonist, indicating the exclusive involvement of AMPA-preferring receptors. The AMPA effect persisted in the presence of picrotoxin (PTX) or di-hydrokainic acid (DHK), suggesting that the feedback from LHCs onto cones and glutamate transporters on cones may not be involved. It is suggested that there may exist different AMPA receptor subtypes with distinct characteristics on LHCs, which mediate signal transfer from R- and G-cones to LHCs, respectively.  相似文献   

7.
The nature of surround-induced depolarizing responses in goldfish cones   总被引:2,自引:0,他引:2  
Cones in the vertebrate retina project to horizontal and bipolar cells and the horizontal cells feedback negatively to cones. This organization forms the basis for the center/surround organization of the bipolar cells, a fundamental step in the visual signal processing. Although the surround responses of bipolar cells have been recorded on many occasions, surprisingly, the underlying surround-induced responses in cones are not easily detected. In this paper, the nature of the surround-induced responses in cones is studied. Horizontal cells feed back to cones by shifting the activation function of the calcium current in cones to more negative potentials. This shift increases the calcium influx, which increases the neurotransmitter release of the cone. In this paper, we will show that under certain conditions, in addition to this increase of neurotransmitter release, a calcium-dependent chloride current will be activated, which polarizes the cone membrane potential. The question is, whether the modulation of the calcium current or the polarization of the cone membrane potential is the major determinant for feedback-mediated responses in second-order neurons. Depolarizing light responses of biphasic horizontal cells are generated by feedback from monophasic horizontal cells to cones. It was found that niflumic acid blocks the feedback-induced depolarizing responses in cones, while the shift of the calcium current activation function and the depolarizing biphasic horizontal cell responses remain intact. This shows that horizontal cells can feed back to cones, without inducing major changes in the cone membrane potential. This makes the feedback synapse from horizontal cells to cones a unique synapse. Polarization of the presynaptic (horizontal) cell leads to calcium influx in the postsynaptic cell (cone), but due to the combined activity of the calcium current and the calcium-dependent chloride current, the membrane potential of the postsynaptic cell will be hardly modulated, whereas the output of the postsynaptic cell will be strongly modulated. Since no polarization of the postsynaptic cell is needed for these feedback-mediated responses, this mechanism of synaptic transmission can modulate the neurotransmitter release in single synaptic terminals without affecting the membrane potential of the entire cell.  相似文献   

8.
Levic S  Bouleau Y  Dulon D 《PloS one》2011,6(10):e25714
Auditory hair cells (HCs) have the remarkable property to indefinitely sustain high rates of synaptic vesicle release during ongoing sound stimulation. The mechanisms of vesicle supply that allow such indefatigable exocytosis at the ribbon active zone remain largely unknown. To address this issue, we characterized the kinetics of vesicle recruitment and release in developing chick auditory HCs. Experiments were done using the intact chick basilar papilla from E10 (embryonic day 10) to P2 (two days post-hatch) by monitoring changes in membrane capacitance and Ca(2+) currents during various voltage stimulations. Compared to immature pre-hearing HCs (E10-E12), mature post-hearing HCs (E18-P2) can steadily mobilize a larger readily releasable pool (RRP) of vesicles with faster kinetics and higher Ca(2+) efficiency. As assessed by varying the inter-pulse interval of a 100 ms paired-pulse depolarization protocol, the kinetics of RRP replenishment were found much faster in mature HCs. Unlike mature HCs, exocytosis in immature HCs showed large depression during repetitive stimulations. Remarkably, when the intracellular concentration of EGTA was raised from 0.5 to 2 mM, the paired-pulse depression level remained unchanged in immature HCs but was drastically increased in mature HCs, indicating that the Ca(2+) sensitivity of the vesicle replenishment process increases during maturation. Concomitantly, the immunoreactivity of the calcium sensor otoferlin and the number of ribbons at the HC plasma membrane largely increased, reaching a maximum level at E18-P2. Our results suggest that the efficient Ca(2+)-dependent vesicle release and supply in mature HCs essentially rely on the concomitant engagement of synaptic ribbons and otoferlin at the plasma membrane.  相似文献   

9.
Cell surface hemichannels (HCs) composed of different connexin (Cx) types are present in diverse cells and their possible role on FGF-1-induced cellular responses remains unknown. Here, we show that FGF-1 transiently (4-14 h, maximal at 7 h) increases the membrane permeability through HCs in HeLa cells expressing Cx43 or Cx45 under physiological extracellular Ca(2+)/Mg(2+) concentrations. The effect does not occur in HeLa cells expressing HCs constituted of Cx26 or Cx43 with its C-terminus truncated at aa 257, or in parental nontransfected HeLa cells. The increase in membrane permeability is associated with a rise in HC levels at the cell surface and a proportional increase in HC unitary events. The response requires an early intracellular free Ca(2+) concentration increase, activation of a p38 MAP kinase-dependent pathway, and a regulatory site of Cx subunit C-terminus. The FGF-1-induced rise in membrane permeability is also associated with a late increase in intracellular free Ca(2+) concentration, suggesting that responsive HCs allow Ca(2+) influx. The cell density of Cx26 and Cx43 HeLa transfectants cultured in serum-free medium was differentially affected by FGF-1. Thus, the FGF-1-induced cell permeabilization and derived consequences depend on the Cx composition of HCs.  相似文献   

10.
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina.  相似文献   

11.
Chen WR  Xiong W  Shepherd GM 《Neuron》2000,25(3):625-633
In the mammalian olfactory bulb, signal processing is mediated by synaptic interactions between dendrites. Glutamate released from mitral cell dendrites excites dendritic spines of granule cells, which in turn release GABA back onto the mitral cell dendrites, forming a reciprocal synaptic pair. This feedback synaptic circuit was shown to be mediated predominantly by NMDA receptors. We further utilized caged Ca2+ compounds to obtain insight into the mechanism that couples NMDA receptor activation to GABA release. Feedback inhibition elicited by photo-release of caged Ca2+ in mitral cell secondary dendrites persisted when voltage-gated Ca2+ channels were blocked by cadmium (Cd2+) and nickel (Ni2+). These results indicate that Ca2+ influx through NMDA receptors can directly trigger presynaptic GABA release for local dendrodendritic feedback inhibition.  相似文献   

12.

Background

Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca2+-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.

Methodology/Principal Findings

To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed by means of a quantitative computer model of the cone/horizontal cell synapse.

Conclusion

We conclude that the data presented in this paper offers further support for physiologically relevant ephaptic interactions in the retina.  相似文献   

13.
DeVries SH 《Neuron》2000,28(3):847-856
Unlike cone photoreceptors, whose light responses have a uniform time course, retinal ganglion cells are tuned to respond to different temporal components in a changing visual scene. The signals in a mammalian cone flow to three to five morphologically distinct "OFF" bipolar cells at a sign-conserving, glutamatergic synapse. By recording simultaneously from pairs of synaptically connected cones and OFF bipolar cells, I now show that each morphological type of OFF bipolar cell receives its signal through a different AMPA or kainate receptor. The characteristic rate at which each receptor recovers from desensitization divides the cone signal into temporal components. Temporal processing begins at the first synapse in the visual system.  相似文献   

14.
Emptage N  Bliss TV  Fine A 《Neuron》1999,22(1):115-124
We have used confocal microscopy to monitor synaptically evoked Ca2+ transients in the dendritic spines of hippocampal pyramidal cells. Individual spines respond to single afferent stimuli (<0.1 Hz) with Ca2+ transients or failures, reflecting the probability of transmitter release at the activated synapse. Both AMPA and NMDA glutamate receptor antagonists block the synaptically evoked Ca2+ transients; the block by AMPA antagonists is relieved by low Mg2+. The Ca2+ transients are mainly due to the release of calcium from internal stores, since they are abolished by antagonists of calcium-induced calcium release (CICR); CICR antagonists, however, do not depress spine Ca2+ transients generated by backpropagating action potentials. These results have implications for synaptic plasticity, since they show that synaptic stimulation can activate NMDA receptors, evoking substantial Ca2+ release from the internal stores in spines without inducing long-term potentiation (LTP) or depression (LTD).  相似文献   

15.
The effect of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), a selective glutamate receptor agonist, on the release of previously incorporated [(3)H]GABA was examined in superfused striatal slices of the rat. The slices were loaded with [(3)H]GABA in the presence of beta-alanine (1 mM) and superfused with Krebs-bicarbonate buffer containing nipecotic acid (0.1 mM) and aminooxyacetic acid (0.1 mM) to inhibit GABA uptake and metabolism. AMPA (0.01 to 3 mM) increased basal [(3)H]GABA outflow and nipecotic acid potentiated this effect. The [(3)H]GABA releasing effect of AMPA was an external Ca(2+)-dependent process in the absence but not in the presence of nipecotic acid. Cyclothiazide (0.03 mM), a positive modulator of AMPA receptors, failed to evoke [(3)H]GABA release by itself, but it dose-dependently potentiated the [(3)H]GABA releasing effect of AMPA. The AMPA (0.3 mM)-induced [(3)H]GABA release was antagonized by NBQX (0.01 mM) in a competitive fashion (pA(2) 5.08). The negative modulator of AMPA receptors, GYKI-53784 (0.01 mM) reversed the AMPA-induced [(3)H]GABA release by a non-competitive manner (pD'(2) 5.44). GYKI-53784 (0. 01-0.1 mM) also decreased striatal [(3)H]GABA outflow on its own right, this effect was stereoselective and was not influenced by concomitant administration of 0.03 mM cyclothiazide. GYKI-52466 (0. 03-0.3 mM), another negative modulator at AMPA receptors, also inhibited basal [(3)H]GABA efflux whereas NBQX (0.1 mM) by itself was ineffective in alteration of [(3)H]GABA outflow.The present data indicate that AMPA evokes GABA release from the vesicular pool in neostriatal GABAergic neurons. They also confirm that multiple interactions may exist between the agonist binding sites and the positive and negative modulatory sites but no such interaction was detected between the positive and negative allosteric modulators. Since GYKI-53784, but not NBQX, inhibited [(3)H]GABA release by itself, AMPA receptors located on striatal GABAergic neurons may be in sensitized state and phasically controlled by endogenous glutamate. It is also postulated that these AMPA receptors are located extrasynaptically on GABAergic striatal neurons.  相似文献   

16.
Many animal species make use of ultraviolet (UV) light in a number of behaviors, such as feeding and mating. The goldfish (Carassius auratus) is among those with a UV photoreceptor and pronounced UV sensitivity. Little is known, however, about the retinal processing of this input. We addressed this issue by recording intracellularly from second-order neurons in the adult goldfish retina. In order to test whether cone-driven horizontal cells (HCs) receive UV cone inputs, we performed chromatic adaptation experiments with mono- and biphasic HCs. We found no functional evidence of a projection from the UV-sensitive cones to these neurons in adult animals. This suggests that goldfish UV receptors may contact preferentially triphasic HCs, which is at odds with the hypothesis that all cones contact all cone-driven HC types. However, we did find evidence of direct M-cone input to monophasic HCs, favoring the idea that cone–HC contacts are more promiscuous than originally proposed. Together, our results suggest that either UV cones have a more restricted set of post-synaptic partners than the other three cone types, or that the UV input to mono- and biphasic HCs is not very pronounced in adult animals.  相似文献   

17.
Huang H  Li H  He SG 《Cell research》2005,15(3):207-211
Horizontal cells (HCs) mediate negative feedback to photoreceptors. In the mammalian retina, there are two types of HCs, which are extensively coupled to neighboring cells through homologous gap junctions. The permeability and therefore the strength of feedback can be regulated by light intensity, dopamine and many other factors. However, the component(s) of the most prominent gap junctions, those between A-type HCs in the rabbit retina, is still unknown. In this study, we compared the sequences of many types of mammalian connexins, obtained partial sequences of rabbit connexin 50 and 57. Using specific primers designed against the rabbit sequences, we identified mRNAs of connexin 50 and/or 57 in visually selected single A-type HC using multiplex RT-PCR.  相似文献   

18.
We studied the influence of steady annular light on the kinetics and sensitivity of horizontal cell (HC) responses to modulation of the intensity of small concentric spots in the turtle retina. As shown by previous investigators, when the intensity of the annulus was equal to the mean spot intensity, spot response kinetics were the same as those for the modulation of spatially uniform light. Turning off the annulus attenuated dramatically high-frequency flicker sensitivity and enhanced somewhat low-frequency sensitivity. This phenomenon reflects a modulation of synaptic transfer between cones and second-order neurons that is mediated by cones, and it will be referred to as cone-mediated surround enhancement (CMSE). Our main results are as follows: (a) The change in test-spot response sensitivity and kinetics upon dimming a steady surrounding annulus is a consequence of the change in spatial contrast rather than change in overall light level. (b) Introduction of moderate contrast between the mean spot intensity and steady surrounding light intensity causes a marked change in spot response kinetics. (c) The dependence of spot response kinetics on surrounding light can be described by a phenomenological model in which the steady state gain and the time constant of one or two single-stage, low-pass filters increase with decreasing annular light intensity (d) The effect of surrounding light on spot responses of a given HC is not determined by change in the steady component of the membrane potential of that cell. (e) Light outside the receptive field of an HC can affect that cell's spot response kinetics. (f) In an expanding annulus experiment, the distance over which steady annular light affects spot response kinetics varies among HCs and can be quite different even between two cells with closely matched receptive field sizes. (g) The degree of CMSE is correlated with HC receptive field size. This correlation suggests that part of the enhancement mechanism is located in the HC. Taken together, our results suggest the involvement of the inner retina in CMSE.  相似文献   

19.
Linoleic acid (LA) is known to activate G-protein coupled receptors and connexin hemichannels (Cx HCs) but possible interlinks between these two responses remain unexplored. Here, we evaluated the mechanism of action of LA on the membrane permeability mediated by Cx HCs in MKN28 cells. These cells were found to express connexins, GPR40, GPR120, and CD36 receptors. The Cx HC activity of these cells increased after 5 min of treatment with LA or GW9508, an agonist of GPR40/GPR120; or exposure to extracellular divalent cation-free solution (DCFS), known to increase the open probability of Cx HCs, yields an immediate increase in Cx HC activity of similar intensity and additive with LA-induced change. Treatment with a CD36 blocker or transfection with siRNA-GPR120 maintains the LA-induced Cx HC activity. However, cells transfected with siRNA-GPR40 did not show LA-induced Cx HC activity but activity was increased upon exposure to DCFS, confirming the presence of activatable Cx HCs in the cell membrane. Treatment with AKTi (Akt inhibitor) abrogated the LA-induced Cx HC activity. In HeLa cells transfected with Cx43 (HeLa-Cx43), LA induced phosphorylation of surface Cx43 at serine 373 (S373), site for Akt phosphorylation. HeLa-Cx43 but not HeLa-Cx43 cells with a S373A mutation showed a LA-induced Cx HC activity directly related to an increase in cell surface Cx43 levels. Thus, the increase in membrane permeability induced by LA is mediated by an intracellular signaling pathway activated by GPR40 that leads to an increase in membrane levels of Cx43 phosphorylated at serine 373 via Akt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号