首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background and Aims

The males and females of many dioecious plant species differ from one another in important life-history traits, such as their size. If male and female reproductive functions draw on different resources, for example, one should expect males and females to display different allocation strategies as they grow. Importantly, these strategies may differ not only between the two sexes, but also between plants of different age and therefore size. Results are presented from an experiment that asks whether males and females of Mercurialis annua, an annual plant with indeterminate growth, differ over time in their allocation of two potentially limiting resources (carbon and nitrogen) to vegetative (below- and above-ground) and reproductive tissues.

Methods

Comparisons were made of the temporal patterns of biomass allocation to shoots, roots and reproduction and the nitrogen content in the leaves between the sexes of M. annua by harvesting plants of each sex after growth over different periods of time.

Key Results and Conclusions

Males and females differed in their temporal patterns of allocation. Males allocated more to reproduction than females at early stages, but this trend was reversed at later stages. Importantly, males allocated proportionally more of their biomass towards roots at later stages, but the roots of females were larger in absolute terms. The study points to the important role played by both the timing of resource deployment and the relative versus absolute sizes of the sinks and sources in sexual dimorphism of an annual plant.  相似文献   

2.
Li J  Koski MH  Ashman TL 《Annals of botany》2012,109(3):545-552

Background and Aims

Gynodioecy is a phylogenetically widespread and important sexual system where females coexist with hermaphrodites. Because dioecy can arise from gynodioecy, characterization of gynodioecy in close relatives of dioecious and sub-dioecious species can provide insight into this transition. Thus, we sought to determine whether Fragaria vesca ssp. bracteata, a close relative to F. chiloensis and F. virginiana, exhibits the functional and population genetic hallmarks of a gynodioecious species.

Methods

We compared reproductive allocation of females and hermaphrodites grown in the greenhouse and estimated genetic diversity (allelic diversity, heterozygosity) and inbreeding coefficients for field-collected adults of both sexes using simple sequence repeat (SSR) markers. We estimated mating system and early seed fitness from open-pollinated families of both sex morphs.

Key Results

Under greenhouse conditions, females and hermaphrodites allocated similarly to all reproductive traits except flower number, and, as a consequence, females produced 30 % fewer seeds per plant than hermaphrodites. Under natural conditions, hermaphrodites produce seeds by self-fertilization approx. 75 % of the time, and females produced outcrossed seeds with very little biparental inbreeding. Consistent with inbreeding depression, seeds from open-pollinated hermaphrodites were less likely to germinate than those from females, and family-level estimates of hermaphrodite selfing rates were negatively correlated with germination success and speed. Furthermore, estimates of inbreeding depression based on genetic markers and population genetic theory indicate that inbreeding depression in the field could be high.

Conclusions

The joint consideration of allocation and mating system suggests that compensation may be sufficient to maintain females given the current understanding of sex determination. Fragaria vesca ssp. bracteata exhibited similar sex morph-dependent patterns of mating system and genetic diversity, but less reproductive trait dimorphism, than its sub-dioecious and dioecious congeners.  相似文献   

3.

Background and Aims

The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.

Methods

Four diploid microsatellite loci were used to genotype 19–20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.

Key Results

Both populations had similar, intermediate outcrossing rates (tm = 0·64 and 0·52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.

Conclusions

The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.  相似文献   

4.

Background and Aims

Sex allocation has been studied mainly in small herbaceous plants but much less in monoecious wind-pollinated trees. The aim of this study was to explore changes in gender segregation and sex allocation by Pinus halepensis, a Mediterranean lowland pine tree, within tree crowns and between trees differing in their size or crown shape.

Methods

The production of new male and female cones and sex allocation of biomass, nitrogen and phosphorus were studied. The relationship between branch location, its reproductive status and proxies of branch vigour was also studied.

Key Results

Small trees produced only female cones, but, as trees grew, they produced both male and female cones. Female cones were produced mainly in the upper part of the crown, and male cones in its middle and lower parts. Lateral branch density was correlated with the number of male but not female cones; lateral branches were more dense in large than in small trees and even denser in hemispherical trees. Apical branches grew faster, were thicker and their phosphorus concentration was higher than in lateral shoots. Nitrogen concentration was higher in cone-bearing apical branches than in apical vegetative branches and in lateral branches with or without cones. Allocation to male relative to female function increased with tree size as predicted by sex allocation theory.

Conclusions

The adaptive values of sex allocation and gender segregation patterns in P. halepensis, in relation to its unique life history, are demonstrated and discussed. Small trees produce only female cones that have a higher probability of being pollinated than the probability of male cones pollinating; the female-first strategy enhances population spread. Hemispherical old trees are loaded with serotinous cones that supply enough seeds for post-fire germination; thus, allocation to males is more beneficial than to females.  相似文献   

5.

Background and Aims

Reproductive costs imply trade-offs in resource distribution at the physiological level, expressed as changes in future growth and/or reproduction. In dioecious species, females generally endure higher reproductive effort, although this is not necessarily expressed through higher somatic costs, as compensatory mechanisms may foster resource uptake during reproduction.

Methods

To assess effects of reproductive allocation on vegetative growth and physiological response in terms of costs and compensation mechanisms, a manipulative experiment of inflorescence bud removal was carried out in the sexually dimorphic species Corema album. Over two consecutive growing seasons, vegetative growth patterns, water status and photochemical efficiency were measured to evaluate gender-related differences.

Key Results

Suppression of reproductive allocation resulted in a direct reduction in somatic costs of reproduction, expressed through changes in growth variables and plant physiological status. Inflorescence bud removal was related to an increase in shoot elongation and water potential in male and female plants. The response to inflorescence bud removal showed gender-related differences that were related to the moment of maximum reproductive effort in each sexual form: flowering in males and fruiting in females. Delayed costs of reproduction were found in both water status and growth variables, showing gender-related differences in resource storage and use.

Conclusions

Results are consistent with the existence of a trade-off between reproductive and vegetative biomass, indicating that reproduction and growth depend on the same resource pool. Gender-related morphological and physiological differences arise as a response to different reproductive resource requirements. Delayed somatic costs provide evidence of gender-related differences in resource allocation and storage. Adaptive differences between genders in C. album may arise through the development of mechanisms which compensate for the cost of reproduction.  相似文献   

6.

Background and Aims

Differences in competitive ability between the sexes of dioecious plants are expected as a result of allocation trade-offs associated with sex-differential reproductive costs. However, the available data on competitive ability in dioecious plants are scarce and contradictory. In this study sexual competition was evaluated using the dioecious plant Antennaria dioica in a common garden transplantation experiment.

Methods

Male and female plants were grown for 3 years either in isolation, or in competition with a plant of the same sex or the opposite sex. Flowering phenology, sexual and asexual reproduction, plant growth, nutrient content and arbuscular mycorrhizal colonization in the roots were assessed.

Key Results

Our results showed little evidence of sexual differences in competitive ability. Both sexes suffered similarly from competition, and competitive effects were manifested in some traits related to fitness but not in others. Survival was unaffected by competition, but competing plants reduced their vegetative growth and reproductive investment compared with non-competing plants. In addition, differences in sexual competitive ability were observed in relation to flowering frequency, an important life history trait not reported in previous studies.

Conclusions

The findings indicate that female and male A. dioica plants possess similar intersexual competitive abilities which may be related to the similar costs of reproduction between sexes in this species. Nevertheless, intrasexual competition is higher in females, giving support for asymmetric niche segregation between the sexes.  相似文献   

7.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

8.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

9.
Nord EA  Shea K  Lynch JP 《Annals of botany》2011,108(2):391-404

Background and Aims

Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils.

Methods

To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments.

Key Results

The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater.

Conclusions

Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments.  相似文献   

10.

Background and Aims

It is important to consider the modular level when verifying sexual dimorphism in dioecious plants. Nevertheless, between-sex differences in resource translocation among modules (i.e. physiological integration) have not been tested at the whole-plant level. In this study, sexual differences in physiological integration were examined among ramets, within a genet in the dioecious sprouting shrub Lindera triloba, by a field experiment with girdling manipulation.

Methods

Female and male genets were randomly assigned to girdled or intact groups. Girdling of the main ramets was conducted in May 2009 by removing a ring of bark and cambium approx. 1 cm wide at a height of 80–100 cm. The effects of treatment and sex on ramet dynamics (mortality, recruitment and diameter growth) and inflorescence production during 1 year after girdling were examined.

Key Results

The diameter growth rate of main ramets of both sexes was lower at ground level (D0) but higher at breast height (dbh) in girdled than in intact groups. In sprouted ramets with a dbh of 0–2 cm, males in girdled groups had lower growth rates at D0 than those of intact groups, whereas no girdling effect was found for females. The main ramets in girdled groups produced more inflorescences than intact groups, irrespective of sex, but male ramets showed a greater response to the treatment than females.

Conclusions

In L. triloba, physiological integration exists at the whole-plant level, and sprouted ramets are dependent on assimilates translocated from main ramets, but this dependence weakens as sprouted ramets get larger. Female sprouted ramets can grow in a physiologically independent manner from the main ramet earlier than those of males. This study highlights the importance of considering modular structures and physiological integration when evaluating sexual differences in demographic patterns of clonal plants.  相似文献   

11.

Background and Aims

Floral polymorphism is frequently attributed to pollinator-mediated selection. Multiple studies, however, have revealed the importance of non-pollinating visitors in floral evolution. Using the polymorphic annual daisy Ursinia calenduliflora, this study investigated the importance of different insect visitors, and their effects on fitness, in the maintenance of floral polymorphism.

Methods

The spatial structure of a discrete floral polymorphism was characterized based on the presence/absence of anthocyanin floret spots in U. calenduliflora. A 3-year observational study was then conducted in polymorphic populations to investigate differences in visitation rates of dominant visitors to floral morphs. Experiments were performed to explore the floral preference of male and female Megapalpus capensis (the dominant insect visitor) and their effectiveness as pollinators. Next, floral damage by antagonistic florivores and the reproductive success of the two floral morphs were surveyed in multiple populations and years.

Key Results

Floral polymorphism in U. calenduliflora was structured spatially, as were insect visitation patterns. Megapalpus capensis males were the dominant visitors and exhibited strong preference for the spotted morph in natural and experimental observations. While this may indicate potential fitness benefits for the spotted morph, female fitness did not differ between floral morphs. However, as M. capensis males are very efficient at exporting U. calenduliflora pollen, their preference may likely increase the reproductive fitness of the spotted morph through male fitness components. The spotted morph, however, also suffered significantly greater costs due to ovule predation by florivores than the spotless morph.

Conclusions

The results suggest that pollinators and florivores may potentially exert antagonistic selection that could contribute to the maintenance of floral polymorphism across the range of U. calenduliflora. The relative strength of selection imposed by each agent is potentially determined by insect community composition and abundance at each site, highlighting the importance of community context in the evolution of floral phenotypes.  相似文献   

12.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

13.
Yu Q  Li DX  Luo W  Guo YH 《Annals of botany》2011,108(1):65-71

Background and Aims

Why are sterile anthers and carpels retained in some flowering plants, given their likely costs? To address this question, a cryptically dioecious species, Petasites tricholobus, in which male and female plants each have two floret types that appear pistillate and hermaphroditic, was studied. The aim was to understand the function of sterile hermaphroditic florets in females. In addition, the first examination of functions of sterile female structures in male plants was conducted in the hermaphroditic florets on males of this species. These female structures are exceptionally large in this species despite being sterile.

Methods

Differences in floret morphology between the sex morphs were documented and the possible functions of sterile sex organs investigated using manipulative experiments. Tests were carried out to find out if sterile female structures in male florets attract pollinators and if they aid in pollen dispersal, also to find out if the presence and quantity of sterile hermaphroditic florets in females increase pollinator attraction and reproductive success. To investigate what floret types provide nectar, all types of florets were examined under a scanning electron microscope to search for nectaries.

Key Results

The sterile female structures in male florets did not increase pollinator visits but were essential to secondary pollen presentation, which significantly enhanced pollen dispersal. Sterile pistillate florets on male plants did not contribute to floral display and disappeared in nearly half of the male plants. The sterile hermaphroditic florets on female plants attracted pollinators by producing nectar and enhanced seed production.

Conclusions

The presence of female structures in male florets and hermaphroditic florets on female plants is adaptive despite being sterile, and may be evolutionarily stable. However, the pistillate florets on male plants appear non-adaptive and are presumably in decline. Differential fates of the sterile sex organs in the species are determined by both the historical constraints and the ecological functions.  相似文献   

14.

Background and aims

Sexually dimorphic populations are often located in drier habitats than cosexual populations. Gender plasticity (GP), whereby hermaphrodites alter female and male functions depending on resources, and sex-differential plasticity (SDP) between hermaphrodites and unisexuals are predicted to affect sexual system stability. Here, GP and SDP are evaluated in cosexual and gynodioecious Wurmbea biglandulosa and sub-dioecious and dioecious W. dioica.

Methods

GP was evaluated under two resource conditions, compared among sexual systems and assessed as to whether (1) males produced perfect flowers and (2) hermaphrodites altered investment in perfect (female function) and total (male function) flowers. SDP was assessed within sexual systems as differences between sex functions of hermaphrodites vs. unisexuals. Males and hermaphrodites were compared to assess whether size thresholds for female function differed among sexual systems. Plasticity costs were evaluated using correlations between female function and male traits in hermaphrodites, and in W. dioica by comparing hermaphrodite and male regressions between plant size and pollen production.

Key Results

In dioecious W. dioica no males exhibited GP, whereas 100 % did in gynodioecious and cosexual W. biglandulosa. In sub-dioecious W. dioica, resources affected GP (high, 66 %; low, 42 %). Hermaphrodites in all sexual systems reduced perfect but not total flowers under low resources. Unisexuals were unaffected, demonstrating SDP for female function only. Thresholds for female function were greater in sub-dioecious W. dioica than in W. biglandulosa. Plasticity costs were detected only in sub-dioecious W. dioica.

Conclusions

SDP for female function could assist female establishment in cosexual populations and maintain females in gynodioecious and sub-dioecious populations. Although the absence of male SDP should stabilize sub-dioecy, plasticity costs would render sub-dioecy unstable, favouring canalized males over hermaphrodites. This study highlights the importance of interactions between environmental conditions and hermaphrodite sex expression for the stability of dimorphic sexual systems.  相似文献   

15.

Background and aims

Changes in the sex allocation (i.e. in pollen versus seed production) of hermaphroditic plants often occur in response to the environment. In some homosporous ferns, gametophytes choose their gender in response to chemical cues sent by neighbours, such that spores develop as male gametophytes if they perceive a female or hermaphrodite nearby. Here it is considered whether a similar process might occur in the androdioecious angiosperm species Mercurialis annua, in which males co-occur with hermaphrodites; previous work on a Spanish population of M. annua found that individuals were more likely to develop as males at high density.

Methods

Using a novel approach to treat plants with leachate from pots containing males or hermaphrodites of M. annua, the hypothesis that individuals assess their mating opportunities, and adjust their sex expression accordingly, was tested through an exchange of chemical cues through the soil.

Key Results

For the population under study, from Morocco, no evidence was found for soil-signal-dependent sex expression: neither sex ratios nor sex allocation differed among experimental treatments.

Conclusions

The results imply either that the Moroccan population under study behaves differently from that previously studied in Spain (pointing to potential geographical variation in plasticity for sex expression), or that our method failed to capture the signals used by M. annua for adjustment of sex expression.  相似文献   

16.

Background and Aims

Reciprocal herkogamy, including enantiostyly and heterostyly, involves reciprocity in the relative positions of the sexual elements within the flower. Such systems result in morphologically and, since pollen is deposited on and captured from different parts of the pollinator, functionally distinct floral forms. Deviations from the basic pattern may modify the functionality of these mechanisms. For heterostylous species, such deviations are generally related to environmental disturbances, pollination services and/or reduced numbers of one floral morph. Deviations for enantiostylous species have not yet been reported. This study aims to investigate enantiostyly in Chamaecrista flexuosa, in particular the presence of deviations from the standard form, in an area of coastal vegetation in north-east Brazil.

Methods

Observations and investigations of floral biology, the reproductive system, pollinator behaviour, floral morphology and morphometry were performed.

Key Results

In C. flexuosa flowers, anthers of different size but similar function are grouped. The flowers were self-compatible and set fruits after every treatment, except in the spontaneous self-pollination experiment, thereby indicating their dependence on pollen vectors. The flowers were pollinated by bees, especially Xylocopa cearensis and X. grisencens. Pollen is deposited and captured from the ventral portion of the pollinator''s body. Variations in the spatial arrangement of floral elements allowed for the identification of floral morphs based on both morphological and functional criteria. Using morphological criteria, morphologically right (MR) and morphologically left (ML) floral morphs were identified. Three floral morphs were identified using functional criteria: functionally right (FR), functionally central (FC) and functionally left (FL). Combinations of morphologically and functionally defined morphs did not occur in equal proportions. There was a reduced frequency of the MR–FR combination.

Conclusions

The results indicate the occurrence of an atypical enantiostyly in C. flexuosa. This seems to improve reproductive success by increasing the efficiency of pollen deposition and capture.  相似文献   

17.

Background and Aims

Abolboda (Xyridaceae) belongs to the Poales, a predominantly wind-pollinated order whose phylogeny has been widely studied in recent years. The reproductive biology of Abolboda pulchella and A. poarchon was studied to determine the main pollination system of these species, providing the first experimental data on reproduction in the Xyridaceae.

Methods

A field study was conducted, including observations on the morphology and biology of the flowers, insect visits and pollinator behaviour. Experimental pollination treatments were performed to assess agamospermy, spontaneous self-pollination and self-compatibility. Pollination success was determined by pollen tube growth, and reproductive success was assessed by fruit- and seed-set.

Key Results

Abolboda pulchella and A. poarchon were pollinated by Apidae, Megachilidae and Halictidae bees. The floral resources were pollen and nectar that was produced by stylar appendages, an uncommom nectary type for monocotyledons. The species were self-compatible, and pollen tube growth from self-pollen was similar to that of cross-pollen. However, herkogamy prevented spontaneous selfing, rendering the plants dependent on the pollinator''s activity. There was no production of seeds by agamospermy.

Conclusions

Melittophily is the main pollination system of these two Abolboda species. Nectar production was first recorded here for Xyridaceae, and along with self-compatibility, herkogamy and bee pollination, is an informative characteristic that can be used in future phylogenetic analyses of the family as well as Poales.  相似文献   

18.

Background and Aims

The close relationship between distylic Cordia leucocephala and the bee Ceblurgus longipalpis, both endemic to the Caatinga, north-east Brazil, was investigated, emphasizing reproductive dependence, morphological adaptations of the partners, and pollen flow.

Methods

In the municipality of Pedra, in the Caatinga of Pernambuco, the breeding system and reproductive success of C. leucocephala, its interaction with flower visitors and inter- and intramorph pollen flow were determined.

Key Results

The bee Ceblurgus longipalpis, the unique flower visitor and effective pollinator of self-incompatible Cordia leucocephala, presents morphological features adapted to exploit hidden pollen and nectar in the long and narrow corolla tubes. Pollen of low-level anthers is collected with hairs on prolonged mouthparts and pollen of high-level anthers with clypeus, mandibles, and labrum, showing pollen removal from both levels with the same effectiveness. In both morphs, this results in similar legitimate, i.e. intermorph cross-pollen flow. Illegitimate pollen flow to stigmas of pin flowers, however, was much higher than to stigmas of thrum flowers. Moreover, more illegitimate pollen was transported to stigmas of pin and less to those of thrum flowers when compared with legitimate pollen flow.

Conclusions

The study reveals a one-to-one reproductive inter-dependence between both partners. Data indicate that this relationship between bee species and plant species is one of the rare cases of monolecty among bees. Monotypic Ceblurgus longipalpis, the only rophitine species of Brazil, evolved prolonged mouthparts rare among short-tongued bees that enable them to access pollen from flowers with short-level anthers hidden for bees of other species, and nectar at the base of the flower tube.  相似文献   

19.
Ida TY  Harder LD  Kudo G 《Annals of botany》2012,109(1):237-246

Background

The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand.

Methods

To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production.

Key Results

Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly.

Conclusions

The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance.  相似文献   

20.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号