首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

2.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

3.
Theoretical studies on the evolution of dispersal in metacommunities are rare despite empirical evidence suggesting that interspecific interactions can modify dispersal behaviour of organisms. To understand the role of species interactions for dispersal evolution, we utilize an individual‐based model of a metacommunity where local population dynamics follows a stochastic version of the Nicholson–Bailey model and dispersal probability is an evolving trait. Our results show that in comparison with a neutral system (commensalism), parasitism promotes dispersal of hosts and parasites, while mutualism tends to reduce dispersal in both partners. Search efficiency of guests (only in the case of parasitism), dispersal mortality and external extinction risk can influence the evolution of dispersal of all partners. In systems composed of two host and two guest species, lower dispersal probabilities evolve under parasitism as well as mutualism than in one host and one guest species systems. This is because of frequency‐dependent modulations of dispersal benefits emerging in such systems for all partners.  相似文献   

4.
Dispersal is a major organising force in metacommunities, which may facilitate compositional responses of local communities to environmental change and affect ecosystem function. Organism groups differ widely in their dispersal abilities and their communities are therefore expected to have different adaptive abilities. In mesocosms, we studied the simultaneous compositional response of three plankton communities (zoo-, phyto- and bacterioplankton) to a primary productivity gradient and evaluated how this response was mediated by dispersal intensity. Dispersal enhanced responses in all three planktonic groups, which also affected ecosystem functioning. Yet, variation partitioning analyses indicated that responses in phytoplankton and bacterial communities were not only controlled by dispersal directly but also indirectly through complex trophic interactions. Our results indicate that metacommunity patterns emerging from dispersal can cascade through the food web and generate patterns of apparent dispersal limitation in organisms at other trophic levels.  相似文献   

5.
The outcome of competitive interactions is likely to be influenced by both competitive dominance (i.e. niche-based dynamics) and ecological drift (i.e. neutral dynamics governed by demographic stochasticity). However, spatial models of competition rarely consider the joint operation of these two processes. We develop a model based on the original competition-colonization trade-off model that incorporates niche and neutral processes and several realistic facets of ecological dynamics: it allows local competition (i.e. competition within a patch) to occur within communities of a finite size, it allows competitors to vary in the degree of competitive asymmetry, and it includes the role of local migration (i.e. propagule pressure). The model highlights the role of community size, i.e. the number of competitors in the local community, in mediating the relative importance of stochastic and deterministic forces. In metacommunities where local communities are small, ecological drift is substantial enough that strong competitors become effectively neutral, creating abrupt changes in the outcome of competition not predicted by the standard competition-colonization trade-off. Importantly, the model illustrates that, even when other aspects of species interactions (e.g. migration ability, competitive ability) are unchanged, local community size can alter the dynamics of metacommunity persistence. Our work demonstrates that activities which reduce the size of local communities, such as habitat destruction and degradation, effectively compound the extinction debt.  相似文献   

6.
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.  相似文献   

7.
8.
The synchronous behaviour of interacting communities is studied in this paper. Each community is described by a tritrophic food chain model, and the communities interact through a network with arbitrary topology, composed of patches and migration corridors. The analysis of the local synchronization properties (via the master stability function approach) shows that, if only one species can migrate, the dispersal of the consumer (i.e., the intermediate trophic level) is the most effective mechanism for promoting synchronization. When analysing the effects of the variations of demographic parameters, it is found that factors that stabilize the single community also tend to favour synchronization. Global synchronization is finally analysed by means of the connection graph method, yielding a lower bound on the value of the dispersion rate that guarantees the synchronization of the metacommunity for a given network topology.  相似文献   

9.
ABSTRACT

Evolution requires the generation and optimization of new traits (“adaptation”) and involves the selection of mutations that improve cellular function. These mutations were assumed to arise by selection of neutral mutations present at all times in the population. Here we review recent evidence that indicates that deleterious mutations are more frequent in the population than previously recognized and that these mutations play a significant role in protein evolution through continuous positive selection. Positively selected mutations include adaptive mutations, i.e. mutations that directly affect enzymatic function, and compensatory mutations, which suppress the pleiotropic effects of adaptive mutations. Compensatory mutations are by far the most frequent of the two and would allow potentially adaptive but deleterious mutations to persist long enough in the population to be positively selected during episodes of adaptation. Compensatory mutations are, by definition, context-dependent and thus constrain the paths available for evolution. This provides a mechanistic basis for the examples of highly constrained evolutionary landscapes and parallel evolution reported in natural and experimental populations. The present review article describes these recent advances in the field of protein evolution and discusses their implications for understanding the genetic basis of disease and for protein engineering in vitro.  相似文献   

10.
Gene interactions from maternal effects   总被引:5,自引:0,他引:5  
Theoretical analyses have demonstrated a potential role for epistasis in many of the most important processes in evolution. These analyses generally assume that an individual's genes map directly to its phenotype and epistasis results from interactions among loci that contribute to the same biochemical or developmental pathways (termed physiological, or within-genotype, epistasis). For many characters, particularly those expressed early in life, an individual's phenotype may also be affected by genes expressed by its parents. The presence of these parental effects allows for interactions between the genes present in the parental and offspring genomes. When the phenotypic effect of a locus in the offspring depends on the alleles possessed by its parents, genotype-by-genotype, or among-genotype, epistasis occurs. The among-genotype epistasis resulting from parental effects may contribute to ruggedness of adaptive landscapes because early mortality often accounts for much of the variance in fitness in populations. To demonstrate how parent-offspring interactions can result in among-genotype epistasis, I use a two-locus model, with one maternal effect locus and one direct effect locus, each with two alleles. Dynamical equations are presented for the two-locus model and are directly contrasted with the dynamical equations derived for a model for physiological epistasis. The relationship between the evolutionary dynamics resulting from these two forms of epistasis is discussed. Three scenarios are presented to illustrate systems in which maternal-offspring, genotype-by-genotype epistasis may occur. The implications of maternal-offspring epistasis for quantitative-trait-loci studies are also discussed.  相似文献   

11.
Explaining the evolution and maintenance of polyandry remains a key challenge in evolutionary ecology. One appealing explanation is the sexually selected sperm (SSS) hypothesis, which proposes that polyandry evolves due to indirect selection stemming from positive genetic covariance with male fertilization efficiency, and hence with a male's success in postcopulatory competition for paternity. However, the SSS hypothesis relies on verbal analogy with “sexy-son” models explaining coevolution of female preferences for male displays, and explicit models that validate the basic SSS principle are surprisingly lacking. We developed analogous genetically explicit individual-based models describing the SSS and “sexy-son” processes. We show that the analogy between the two is only partly valid, such that the genetic correlation arising between polyandry and fertilization efficiency is generally smaller than that arising between preference and display, resulting in less reliable coevolution. Importantly, indirect selection was too weak to cause polyandry to evolve in the presence of negative direct selection. Negatively biased mutations on fertilization efficiency did not generally rescue runaway evolution of polyandry unless realized fertilization was highly skewed toward a single male, and coevolution was even weaker given random mating order effects on fertilization. Our models suggest that the SSS process is, on its own, unlikely to generally explain the evolution of polyandry.  相似文献   

12.
W. D. Hamilton famously suggested that the inflated relatedness of full sisters under haplodiploidy explains why all workers in the social hymenoptera are female. This suggestion has not stood up to further theoretical scrutiny and is not empirically supported. Rather, it appears that altruistic sib‐rearing in the social hymenoptera is performed exclusively by females because this behaviour has its origins in parental care, which was performed exclusively by females in the ancestors of this insect group. However, haplodiploidy might still explain the sex of workers if this mode of inheritance has itself been responsible for the rarity of paternal care in this group. Here, we perform a theoretical kin selection analysis to investigate the evolution of paternal care in diploid and haplodiploid populations. We find that haplodiploidy may either inhibit or promote paternal care depending on model assumptions, but that under the most plausible scenarios it promotes – rather than inhibits – paternal care. Our analysis casts further doubt upon there being a causal link between haplodiploidy and eusociality.  相似文献   

13.
Aim Community ecologists often compare assemblages. Alternatively, one may compare species distributions among assemblages for macroecological comparisons of species niche traits and dispersal abilities, which are consistent with metacommunity theory and a regional community concept. The aim of this meta‐analysis is to use regressions of ranked species occupancy curves (RSOCs) among diverse metacommunities and to consider the common patterns observed. Location Diverse data sets from four continents are analysed. Methods Six regression models were translated from traditional occupancy frequency distributions (OFDs) and are distributed among four equation families. Each regression model was fitted to each of 24 data sets and compared using the Akaike information criterion. The analysed data sets encompass a wide range of spatial scales (5 cm–50 km grain, 2–7000 km extent), study scales (11–590 species, 6–5114 sites) and taxa. Observed RSOC regressions were tested for the differences in scale and taxa. Results Three RSOC models within two equation families (exponential and sigmoidal) are required to describe the very different data sets. This result is generally consistent with OFD research, but unlike OFD‐based expectations the simple RSOC patterns are not related to spatial scale or other factors. Species occupancy in diverse metacommunities is efficiently summarized with RSOCs, and multi‐model inference reliably distinguishes among alternative RSOCs. Main conclusions RSOCs are simple to generate and analyse and clearly identified surprisingly similar patterns among very different metacommunities. Species‐specific hypotheses (e.g. niche‐based factors and dispersal abilities) that depend on spatial scale may not translate to diverse metacommunities that sample regional communities. A novel set of three metacommunity succession and disturbance hypotheses potentially explain RSOC patterns and should be tested in subsequent research. RSOCs are an operational approach to the regional community concept and should be useful in macroecology and metacommunity ecology.  相似文献   

14.
1.  Modern theories of species coexistence recognize the importance of environmental heterogeneity.
2.  Despite the existence of many observational studies, few experimental studies have evaluated the extent to which, and mechanisms by which, fixed spatial heterogeneity increases community diversity and alters community structure.
3  In experimental protist communities, we found that non-spatial mechanisms unrelated to heterogeneity were responsible for a large component of baseline diversity. Above this baseline, fixed spatial heterogeneity produced small but predictable increases in metacommunity diversity through species sorting, while heterogeneity and dispersal together altered local community structure (composition and relative abundance) through mass effects.
4.  Our study illustrates that heterogeneity is not always the strongest driver of diversity, while experimentally demonstrating mechanisms by which heterogeneity alters community structure.  相似文献   

15.
Summary While many developmental processes (e. g., gene networks or signaling pathways) are astonishingly conserved during evolution, they may be employed differently in different metazoan taxa or may be used multiply in different contexts of development. This suggests that these processes belong to building blocks or modules, viz., highly integrated parts of the organism, which develop and/or function relatively independent from other parts. Such modules may be relatively easy to dissociate from other modules and, therefore, could also serve as units of evolution. However, in order to further explore the implications of modularity for evolution, the vague notion of “modularity” as well as its relation to concepts like “unit of evolution” need to be more precisely specified. Here, a module is characterized as a certain type of dynamic pattern of couplings among the constituents of a process. It may or may not form a spatially contiguous unit. A unit of selection is defined as a unit of those constituents of a reproducing process/system, which exists in different variants and acts as a non-decomposable unit of fitness and variant reproduction during a particular selection process. The more general notion of a unit of evolution is characterized as a nondecomposable unit of constituents with reciprocal fitness dependence, be it due to fitness epistasis or due to the lack of independent variability. Because such fitness dependence may only be observed for some combinations of variants, several constituents may act as a unit of evolution only with a certain probability (coevolution probability). It is argued, that under certain conditions modules are likely to act as units of evolution with high coevolution probabilities, because there is likely to be a close tie between the pattern of couplings of the constituents of a reproducing system and their interdependent fitness contributions. Moreover and contrary to the traditional dichotomy of genes versus organisms as units of selection, modules tend to be more important in delimiting actual units of selection than either organisms or genes, because they are less easily disrupted by recombination than organisms, while having less contextsensitive fitness values than genes. Finally, it is suggested that the evolution of modularity is self-reinforcing, because the flexibility of intermodular connections facilitates the recombination among modules and their multiple employment in new contexts.  相似文献   

16.
Community genetics is a synthesis of community ecology and evolutionary biology. It examines how genetic variation within a species affects interactions among species to change ecological community structure and diversity. The use of community genetics approaches has greatly expanded in recent years and the evidence for ecological effects of genetic diversity is growing. The goal of current community genetics research is to determine the circumstances in which, and the mechanisms by which community genetic effects occur and is the focus of the papers in this special issue. We bring a new group of researchers into the community genetics fold. Using a mixture of empirical research, literature reviews and theoretical development, we introduce novel concepts and methods that we hope will enable us to develop community genetics into the future.  相似文献   

17.
RNA virus genomes are compact, often containing multiple overlapping reading frames and functional secondary structure. Consequently, it is thought that evolutionary interactions between nucleotide sites are commonplace in the genomes of these infectious agents. However, the role of epistasis in natural populations of RNA viruses remains unclear. To investigate the pervasiveness of epistasis in RNA viruses, we used a parsimony-based computational method to identify pairs of co-occurring mutations along phylogenies of 177 RNA virus genes. This analysis revealed widespread evidence for positive epistatic interactions at both synonymous and nonsynonymous nucleotide sites and in both clonal and recombining viruses, with the majority of these interactions spanning very short sequence regions. These findings have important implications for understanding the key aspects of RNA virus evolution, including the dynamics of adaptation. Additionally, many comparative analyses that utilize the phylogenetic relationships among gene sequences assume that mutations represent independent, uncorrelated events. Our results show that this assumption may often be invalid.  相似文献   

18.
The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.  相似文献   

19.
The Fisherian sexual selection paradigm has been called the null model of sexual selection. At its heart is the expectation of a genetic correlation (rG) between female preference and male trait. However, recent meta‐analysis has shown estimated correlations are often extremely weak and not statistically significant. We show here that systematic failure of studies to reject the null hypothesis that r= 0 is almost certainly due to the low power of most experimental designs used. We provide an easy way to assess experimental power a priori and suggest that current data make it difficult to definitively test a key component of the Fisher effect.  相似文献   

20.
Urban amphibian assemblages as metacommunities   总被引:5,自引:0,他引:5  
1. Urban ecosystems are expanding throughout the world, and urban ecology is attracting increasing research interest. Some authors have questioned the value of existing ecological theories for understanding the processes and consequences of urbanization. 2. In order to assess the applicability of metacommunity theory to urban systems, I evaluated three assumptions that underlie the theory - the effect of patch area, the effect of patch isolation, and species-environment relations - using data on assemblages of pond-breeding amphibians in the Greater Melbourne area of Australia. I also assessed the relative impact of habitat fragmentation, habitat isolation, and changes to habitat quality on these assemblages. 3. Poisson regression modelling provided support for an important increase in species richness with patch area (pond size) and a decrease in species richness with increasing patch isolation, as measured by surrounding road cover. Holding all other variables constant, species richness was predicted to be 2.8-5.5 times higher at the largest pond than at the smallest, while the most isolated pond was predicted to have 12-19% of the species richness of the least isolated pond. Thus, the data were consistent with the first two assumptions of metacommunity theory evaluated. 4. The quality of habitat at a pond was also important, with a predicted 44-56% decrease in the number of species detected at ponds with a surrounding vertical wall compared with those with a gently sloping bank. This demonstrates that environmental differences between habitat patches were also influencing amphibian assemblages, providing support for the species-sorting and/or mass-effect perspectives of metacommunity theory. 5. Without management intervention, urbanization may lead to a reduction in the number of amphibian species persisting in urban ponds, particularly where increasing isolation of ponds by roads and associated infrastructure reduces the probability of re-colonization following local extinction. Journal of Animal Ecology (2006) 75, 757-764 doi: 10.1111/j.1365-2656.2006.01096.x.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号