首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Aim

Many important patterns and processes vary across the phylogeny and depend on phylogenetic scale. Nonetheless, phylogenetic scale has never been formally conceptualized, and its potential remains largely unexplored. Here, we formalize the concept of phylogenetic scale, review how phylogenetic scale has been considered across multiple fields and provide practical guidelines for the use of phylogenetic scale to address a range of biological questions.

Innovation

We summarize how phylogenetic scale has been treated in macroevolution, community ecology, biogeography and macroecology, illustrating how it can inform, and possibly resolve, some of the longstanding controversies in these fields. To promote the concept empirically, we define phylogenetic grain and extent, scale dependence, scaling and the domains of phylogenetic scale. We illustrate how existing phylogenetic data and statistical tools can be used to investigate the effects of scale on a variety of well‐known patterns and processes, including diversification rates, community structure, niche conservatism or species‐abundance distributions.

Main conclusions

Explicit consideration of phylogenetic scale can provide new and more complete insight into many longstanding questions across multiple fields (macroevolution, community ecology, biogeography and macroecology). Building on the existing resources and isolated efforts across fields, future research centred on phylogenetic scale might enrich our understanding of the processes that together, but over different scales, shape the diversity of life.  相似文献   

3.
4.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

5.
The evolutionary analysis of community organization is considered a major frontier in biology. Nevertheless, current explanations for community structure exclude the effects of genes and selection at levels above the individual. Here, we demonstrate a genetic basis for community structure, arising from the fitness consequences of genetic interactions among species (i.e., interspecific indirect genetic effects or IIGEs). Using simulated and natural communities of arthropods inhabiting North American cottonwoods (Populus), we show that when species comprising ecological communities are summarized using a multivariate statistical method, nonmetric multidimensional scaling (NMDS), the resulting univariate scores can be analyzed using standard techniques for estimating the heritability of quantitative traits. Our estimates of the broad-sense heritability of arthropod communities on known genotypes of cottonwood trees in common gardens explained 56-63% of the total variation in community phenotype. To justify and help interpret our empirical approach, we modeled synthetic communities in which the number, intensity, and fitness consequences of the genetic interactions among species comprising the community were explicitly known. Results from the model suggest that our empirical estimates of broad-sense community heritability arise from heritable variation in a host tree trait and the fitness consequences of IGEs that extend from tree trait to arthropods. When arthropod traits are heritable, interspecific IGEs cause species interactions to change, and community evolution occurs. Our results have implications for establishing the genetic foundations of communities and ecosystems.  相似文献   

6.
In recent years much progress has been made towards understanding the selective forces involved in the evolution of social behaviour including conflicts over reproduction among group members. Here, I argue that an important additional step necessary for advancing our understanding of the resolution of potential conflicts within insect societies is to consider the genetics of the behaviours involved. First, I discuss how epigenetic modifications of behaviour may affect conflict resolution within groups. Second, I review known natural polymorphisms of social organization to demonstrate that a lack of consideration of the genetic mechanisms involved may lead to erroneous explanations of the adaptive significance of behaviour. Third, I suggest that, on the basis of recent genetic studies of sexual conflict in Drosophila, it is necessary to reconsider the possibility of within-group manipulation by means of chemical substances (i.e. pheromones). Fourth, I address the issue of direct versus indirect genetic effects, which is of particular importance for the study of behaviour in social groups. Fifth, I discuss the issue of how a genetic influence on dominance hierarchies and reproductive division of labour can have secondary effects, for example in the evolution of promiscuity. Finally, because the same sets of genes (e.g. those implicated in chemical signalling and the responses that are triggered) may be used even in species as divergent as ants, cooperative breeding birds and primates, an integration of genetic mechanisms into the field of social evolution may also provide unifying ideas.  相似文献   

7.
Ejaculates function as an integrated unit to ensure male fertility and paternity, can have a complex structure, and can experience multiple episodes of selection. Current studies on the evolution of ejaculates typically focus on phenotypic variation in sperm number, size, or related traits such as testes size as adaptations to postcopulatory male-male competition. However, the evolution of the integrated nature of ejaculate structure and function depends on genetic variation in and covariation between the component parts. Here we report a quantitative genetic study of the components of the ejaculate of the cockroach Nauphoeta cinerea, including those we know to experience postcopulatory sexual selection, in the context of functional integration of ejaculate characters. We use the patterns of genetic variation and covariation to infer how the integration of the functions of the ejaculate constrain and shape its evolution. Ejaculate components were highly variable, showed significant additive genetic variance, and moderate to high evolvability. The level of genetic variation in these characters, despite strong directional or truncating selection, may reflect the integration of multiple episodes of selection that occur in N. cinerea. There were few significant phenotypic correlations, but all the genetic correlations among ejaculate characters were significantly different from zero. The patterns of genetic variation and covariation suggest that there are important trade-offs among individual traits of the ejaculate and that evolution of ejaculate characteristics will not proceed unconstrained. Fully describing the genetic relationships among traits that perform as an integrated unit helps us understand how functional relationships constrain or facilitate the evolution of the complex structure that is the ejaculate.  相似文献   

8.
Maternal effects are widespread and can have dramatic influences on evolutionary dynamics, but their genetic basis has been measured rarely in natural populations. We used cross-fostering techniques and a long-term study of a natural population of red squirrels, Tamiasciurus hudsonicus, to estimate both direct (heritability) and indirect (maternal) influences on the potential for evolution. Juvenile growth in both body mass and size had significant amounts of genetic variation (mass h(2) = 0.10; size h(2) = 0.33), but experienced large, heritable maternal effects. Growth in body mass also had a large positive covariance between direct and maternal genetic effects. The consideration of these indirect genetic effects revealed a greater than three-fold increase in the potential for evolution of growth in body mass (h(2)t = 0.36) relative to that predicted by heritability alone. Simple heritabilities, therefore, may severely underestimate or overestimate the potential for evolution in natural populations of animals.  相似文献   

9.
Competition for resources including food, physical space, and potential mates is a fundamental ecological process shaping variation in individual phenotype and fitness. The evolution of competitive ability, in particular social dominance, depends on genetic (co)variation among traits causal (e.g., behavior) or consequent (e.g., growth) to competitive outcomes. If dominance is heritable, it will generate both direct and indirect genetic effects (IGE) on resource‐dependent traits. The latter are expected to impose evolutionary constraint because winners necessarily gain resources at the expense of losers. We varied competition in a population of sheepshead swordtails, Xiphophorus birchmanni, to investigate effects on behavior, size, growth, and survival. We then applied quantitative genetic analyses to determine (i) whether competition leads to phenotypic and/or genetic integration of behavior with life history and (ii) the potential for IGE to constrain life history evolution. Size, growth, and survival were reduced at high competition. Male dominance was repeatable and dominant individuals show higher growth and survival. Additive genetic contributions to phenotypic covariance were significant, with the G matrix largely recapitulating phenotypic relationships. Social dominance has a low but significant heritability and is strongly genetically correlated with size and growth. Assuming causal dependence of growth on dominance, hidden IGE will therefore reduce evolutionary potential.  相似文献   

10.
In many traits involved in social interactions, such as courtship and aggression, the phenotype is an outcome of interactions between individuals. Such traits whose expression in an individual is partly determined by the phenotype of its social partner are called "interacting phenotypes." Quantitative genetic models suggested that interacting phenotypes can evolve much faster than nonsocial traits. Current models, however, consider the interaction between phenotypes of social partners as a fixed phenotypic response rule, represented by an interaction coefficient (ψ). Here, we extend existing theoretical models and incorporate the interaction coefficient as a trait that can evolve. We find that the evolution of the interaction coefficient can change qualitatively the predictions about the rate and direction of evolution of interacting phenotypes. We argue that it is crucial to determine whether and how the phenotypic response of an individual to its social partner can evolve to make accurate predictions about the evolution of traits involved in social interactions.  相似文献   

11.
12.
Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.  相似文献   

13.
11 , Evolution 34 : 292–305) equations for predicting the evolution of sexual size dimorphism (SSD) through frequency‐dependent sexual selection, and frequency‐independent natural selection, were tested against results obtained from a stochastic genetic simulation model. The SSD evolved faster than predicted, due to temporary increases in the genetic variance brought about by directional selection. Predictions for the magnitude of SSD at equilibrium were very accurate for weak sexual selection. With stronger sexual selection the total response was greater than predicted. Large changes in SSD can occur without significant long‐term change in the genetic correlation between the sexes. Our results suggest that genetic correlations constrain both the short‐term and long‐term evolution of SSD less than predicted by the Lande model.  相似文献   

14.
Relyea R  Hoverman J 《Ecology letters》2006,9(10):1157-1171
The field of ecotoxicology is experiencing a surge in attention among ecologists as we gain a deeper appreciation for how contaminants can impact natural ecosystems. This interest is particularly strong in aquatic systems where many non-target organisms experience pesticides. In this article, we assess how pesticides affect freshwater systems by applying the conceptual framework of density- and trait-mediated indirect effects from the field of basic ecology. We demonstrate the utility of this framework for understanding the conditions under which pesticides affect species interactions, communities and ecosystems. Through the integration of laboratory toxicity tests and this ecological framework, ecotoxicologists should be better able to identify the mechanisms through which pesticides affect communities and ecosystems. We also identify several areas of research that are in critical need of empirical attention including synergistic effects between pesticides and natural stressors, the importance of pesticides on community assembly via habitat preferences and oviposition effects, the timing and frequency of pesticide applications, pesticide effects on population dynamics, the evolution of pesticide resistance in non-target organisms and ecosystem recovery. With this knowledge, one can improve upon management decisions and help protect non-target species that are of conservation concern.  相似文献   

15.
A J Wilson 《Heredity》2014,112(1):70-78
Competition among individuals is central to our understanding of ecology and population dynamics. However, it could also have major implications for the evolution of resource-dependent life history traits (for example, growth, fecundity) that are important determinants of fitness in natural populations. This is because when competition occurs, the phenotype of each individual will be causally influenced by the phenotypes, and so the genotypes, of competitors. Theory tells us that indirect genetic effects arising from competitive interactions will give rise to the phenomenon of ‘evolutionary environmental deterioration'', and act as a source of evolutionary constraint on resource-dependent traits under natural selection. However, just how important this constraint is remains an unanswered question. This article seeks to stimulate empirical research in this area, first highlighting some patterns emerging from life history studies that are consistent with a competition-based model of evolutionary constraint, before describing several quantitative modelling strategies that could be usefully applied. A recurrent theme is that rigorous quantification of a competition''s impact on life history evolution will require an understanding of the causal pathways and behavioural processes by which genetic (co)variance structures arise. Knowledge of the G-matrix among life history traits is not, in and of itself, sufficient to identify the constraints caused by competition.  相似文献   

16.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

17.
The additive genetic variation (VA) of fitness in a population is of particular importance to quantify its adaptive potential and predict its response to rapid environmental change. Recent statistical advances in quantitative genetics and the use of new molecular tools have fostered great interest in estimating fitness VA in wild populations. However, the value of VA for fitness in predicting evolutionary changes over several generations remains mostly unknown. In our study, we addressed this question by combining classical quantitative genetics with experimental evolution in the model organism Tribolium castaneum (red flour beetle) in three new environmental conditions (Dry, Hot, Hot-Dry). We tested for potential constraints that might limit adaptation, including environmental and sex genetic antagonisms captured by negative genetic covariance between environments and female and male fitness, respectively. Observed fitness changes after 20 generations mainly matched our predictions. Given that body size is commonly used as a proxy for fitness, we also tested how this trait and its genetic variance (including nonadditive genetic variance) were impacted by environmental stress. In both traits, genetic variances were sex and condition dependent, but they differed in their variance composition, cross-sex and cross-environment genetic covariances, as well as in the environmental impact on VA.  相似文献   

18.
Within-population variation in the traits underpinning reproductive output has long been of central interest to biologists. Since they are strongly linked to lifetime reproductive success, these traits are expected to be subject to strong selection and, if heritable, to evolve. Despite the formation of durable pair bonds in many animal taxa, reproductive traits are often regarded as female-specific, and estimates of quantitative genetic variation seldom consider a potential role for heritable male effects. Yet reliable estimates of such social genetic effects are important since they influence the amount of heritable variation available to selection. Based on a 52-year study of a nestbox-breeding great tit (Parus major) population, we apply “extended” bivariate animal models in which the heritable effects of both sexes are modeled to assess the extent to which males contribute to heritable variation in seasonal reproductive timing (egg laying date) and clutch size, while accommodating the covariance between the two traits. Our analyses show that reproductive timing is a jointly expressed trait in this species, with (positively covarying) heritable variation for laydate being expressed in both members of a breeding pair, such that the total heritable variance is 50% larger than estimated by traditional models. This result was robust to explicit consideration of a potential male-biased environmental confound arising through sexually dimorphic dispersal. In contrast to laydate, males’ contribution to heritable variation in clutch size was limited. Our study thus highlights the contrasting extent of social determination for two major components of annual reproductive success, and emphasizes the need to consider the social context of what are often considered individual-level traits.  相似文献   

19.
Knowledge of how genetic effects arising from parental care influence the evolution of offspring traits comes almost exclusively from studies of maternal care. However, males provide care in some taxa, and often this care differs from females in quality or quantity. If variation in paternal care is genetically based then, like maternal care and maternal effects, paternal effects may have important consequences for the evolution of offspring traits via indirect genetic effects (IGEs). IGEs and direct–indirect genetic covariances associated with parental care can contribute substantially to total heritability and influence predictions about how traits respond to selection. It is unknown, however, if the magnitude and sign of parental effects arising from fathers are the same as those arising from mothers. We used a reciprocal cross‐fostering experiment to quantify environmental and genetic effects of paternal care on offspring performance in the burying beetle, Nicrophorus vespilloides. We found that IGEs were substantial and direct–indirect genetic covariances were negative. Combined, these patterns led to low total heritabilities for offspring performance traits. Thus, under paternal care, offspring performance traits are unlikely to evolve in response to selection, and variation in these traits will be maintained in the population despite potentially strong selection on these traits. These patterns are similar to those generated by maternal care, indicating that the genetic effects of care on offspring performance are independent of the caregiver's sex.  相似文献   

20.
Intraspecific genetic variation can affect decomposition, nutrient cycling, and interactions between plants and their associated belowground communities. However, the effects of genetic variation on ecosystems can also be indirect, meaning that genes in a focal plant may affect ecosystems by altering the phenotype of interacting (i.e., neighboring) individuals. We manipulated genotype identity, species identity, and the possibility of belowground interactions between neighboring Solidago plants. We hypothesized that, because our plants were nitrogen (N) limited, the most important interactions between focal and neighbor plants would occur belowground. More specifically, we hypothesized that the genotypic identity of a plant's neighbor would have a larger effect on belowground biomass than on aboveground biomass, but only when neighboring plants were allowed to interact belowground. We detected species‐ and genotype‐level variation for aboveground biomass and ramet production. We also found that belowground biomass and ramet production depended on the interaction of neighbor genotype identity and the presence or absence of belowground interactions. Additionally, we found that interspecific indirect genetic effects (IIGEs; changes in focal plant traits due to the genotype identity of a heterospecific neighbor) had a greater effect size on belowground biomass than did focal genotype; however, this effect only held in pots that allowed belowground interactions. These results expand the types of natural processes that can be attributed to genotypes by showing that, under certain conditions, a plant's phenotype can be strongly determined by the expression of genes in its neighbor. By showing that IIGEs are dependent upon plants being able to interact belowground, our results also provide a first step for thinking about how genotype‐based, belowground interactions influence the evolutionary outcomes of plant‐neighbor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号