首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration.

Methods

To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC.

Results

We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and –independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model.

Conclusion

These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders.  相似文献   

3.
4.
5.
6.
Calcium signals in neutrophils can be divided into three distinct phases   总被引:2,自引:0,他引:2  
Rabbit neutrophils were loaded with the fluorescence probe indo-1 and cytosolic free calcium levels were monitored during chemotactic peptide (fMet-Leu-Phe) stimulation. The fMet-Leu-Phe-induced calcium signal consisted of three consecutive phases: (1) an initial peak that was independent of extracellular calcium, (2) a secondary shoulder that required extracellular calcium but was totally blocked by hyperosmolality and (3) a final plateau of elevated calcium that was dependent on extracellular calcium but insensitive to hyperosmolality.  相似文献   

7.

Background

Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood.

Methodology/Principal Findings

We traced the hindlimb corticospinal tract at different timepoints after lesion to show that cervical collateral formation is initiated in the first 10 days. These collaterals can then persist for at least 24 weeks. Interestingly, both major and minor CST components contribute to the formation of persistent CST collaterals. We then developed an approach to label single CST collaterals based on viral gene transfer of the Cre recombinase to a small number of cortical projection neurons in Thy1-STP-YFP or Thy1-Brainbow mice. Reconstruction and analysis of single collaterals for up to 12 weeks after lesion revealed that CST remodeling evolves in 3 phases. Collateral growth is initiated in the first 10 days after lesion. Between 10 days and 3–4 weeks after lesion elongated and highly branched collaterals form in the gray matter, the complexity of which depends on the CST component they originate from. Finally, between 3–4 weeks and 12 weeks after lesion the size of CST collaterals remains largely unchanged, while the pattern of their contacts onto interneurons matures.

Conclusions/Significance

This study provides a comprehensive anatomical analysis of CST reorganization after injury and reveals that CST remodeling occurs in distinct phases. Our results and techniques should facilitate future efforts to unravel the mechanisms that govern CST remodeling and to promote functional recovery after spinal cord injury.  相似文献   

8.
9.
10.
Nucleocytoplasmic shuttling activity of the African swine fever virus p37 protein, a major structural protein of this highly complex virus, has been recently reported. The systematic characterization of the nuclear export ability of this protein constituted the major purpose of the present study. We report that both the N- and C-terminal regions of p37 protein are actively exported from the nucleus to the cytoplasm of yeast and mammalian cells. Moreover, experiments using leptomycin B and small interfering RNAs targeting the CRM1 receptor have demonstrated that the export of p37 protein is mediated by both the CRM1-dependent and CRM1-independent nuclear export pathways. Two signals responsible for the CRM1-mediated nuclear export of p37 protein were identified at the N terminus of the protein, and an additional signal was identified at the C-terminal region, which mediates the CRM1-independent nuclear export. Interestingly, site-directed mutagenesis revealed that hydrophobic amino acids are critical to the function of these three nuclear export signals. Overall, our results demonstrate that two distinct pathways contribute to the strong nuclear export of full-length p37 protein, which is mediated by three independent nuclear export signals. The existence of overlapping nuclear export mechanisms, together with our observation that p37 protein is localized in the nucleus at early stages of infection and exclusively in the cytoplasm at later stages, suggests that the nuclear transport ability of this protein may be critical to the African swine fever virus replication cycle.  相似文献   

11.
In vertebrates troponin complexes interact co-operatively with tropomyosin dimers to modulate skeletal muscle contraction. In order further to investigate troponin assembly and function in vivo, we are developing molecular genetic approaches. Here we report characterization of the gene that encodes Drosophila tropinin-T and analyses of muscle defects engendered by several mutant alleles. We found that the Drosophila troponin-T locus specifies at least three proteins having sequences similar to vertebrate troponin-T. All are significantly larger than any avian or mammalian isoforms, however, due to a highly acidic carboxy-terminal extension. Comparisons of the chromosomal arrangements of vertebrate and Drosophila troponin-T genes revealed that the location of one intron-exon boundary is conserved. This observation and the similarity of vertebrate and Drosophila troponin-T primary sequences suggest that the respective proteins are homologous, and that troponin-T pre-dates the divergence of vertebrate and invertebrate organisms. In situ hybridization of the Drosophila troponin-T gene to polytene chromosomes demonstrated that it resides within subdivision 12A of the X chromosome, precisely where upheld and indented thorax flight muscle mutations have been mapped previously. We determined the nucleotide sequences of troponin-T genes in five extant mutants. All have deleterious alterations, directly establishing that upheld and indented thorax muscle abnormalities are due to defective troponin-T. Two of the alleles, upheld2 and upheld3, apparently disrupt RNA splicing and eliminate most or all troponin-T from flight and jump muscles, while the remaining three alleles change the identities of single amino acids of troponin-T. Electron microscopy of mutant muscles revealed that the two null alleles eliminate thin filaments, except where they are bound by electron-dense material presumed to be Z-disc proteins. Two of the point mutations, upheld101 and indented thorax3, do not perturb assembly of myofibrils, but cause their degeneration within days after muscles begin to be utilized. The final mutation, upheldwhu, reduces the diameter of the myofibril lattice by approximately one-half. We propose hypotheses to explain how each troponin-T mutation engenders the observed myofibrillar defects.  相似文献   

12.
Recent studies on the mobility of membrane markers on crawling cells indicate that there is no long-range centripetal flow of membrane proteins or lipids during cell locomotion. In this article we reflect on the history of ideas about membrane flow in cells, and we discuss how these new findings will shift the focus of research in cell locomotion away from the cell surface to the molecular interactions and dynamics of the actin cytoskeleton.  相似文献   

13.
Circadian rhythms are endogenously generated by a central pacemaker and are synchronized to the environmental LD cycle. The rhythms can be resynchronized, or reentrained, after a shift of the LD cycle, as in traveling across time zones. The authors have performed high-resolution mapping of the pacemaker to analyze the reentrainment process using rat pineal melatonin onset (MT(on)) and melatonin offset (MT(off)) rhythms as markers. Following LD (12:12) delays of 3, 6, and 12 h, MT(on) was phase locked immediately, whereas MT(off) shifted rapidly during the initial 1 through 3 cycles. In all animals, the MT(off) shifted beyond their expected phase positions in the new LD cycle, which resulted in a transient expansion of melatonin secretion duration for several cycles. It took MT(off) only 1, 2, or 3 cycles to complete most of the required phase shifts after 3, 6, or 12 h of the LD cycle delays, respectively. However, the final stabilization of phase relationships of both MT(on) and MT(off) required at least 6 cycles for rats experiencing a 3-h LD delay and much longer for the rest. These results reaffirmed the notion that both onset and offset phases of melatonin rhythms are important markers for the pacemaker and demonstrated that the reentrainment of the central pacemaker to a delay shift of the LD cycle is a 3-step process: an immediate phase lock of onset and a rapid delay shift of offset rhythms, overshoot of the offset, and, finally, a slow adjustment of both onset and offset phases. This study represents the 1st detailed analysis of the pacemaker behavior during reentrainment using melatonin and supports the notion that the eventual adaptation of the circadian pacemaker to a new time zone is a time-consuming process.  相似文献   

14.
The sequences of two Drosophila and one rabbit protein phosphatase (PP) 1 catalytic subunits were determined from their cDNA. The sequence of Drosophila PP1 alpha 1 was deduced from a 2.2-kb cDNA purified from an embryonic cDNA library, while that for Drosophila PP1 beta was obtained from overlapping clones isolated from both a head cDNA library and an eye imaginal disc cDNA library. The gene for Drosophila PP1 alpha 1 is at 96A2-5 on chromosome 3 and encodes a protein of 327 amino acids with a calculated molecular mass of 37.3 kDa. The gene for Drosophila PP1 beta is localized at 9C1-2 on the X chromosome and encodes a protein of 330 amino acids with a predicted molecular mass of 37.8 kDa. PP1 alpha 1 shows 96% amino acid sequence identity to PP1 alpha 2 (302 amino acids), an isoform whose gene is located in the 87B6-12 region of chromosome 3 [Dombrádi, V., Axton, J. M., Glover, D.M. Cohen, P.T.W. (1989) Eur. J. Biochem. 183, 603-610]. PP1 beta shows 85% identity to PP1 alpha 1 and PP1 alpha 2 over the 302 homologous amino acids. These results demonstrate that at least three genes are present in Drosophila that encode different isoforms of PP1. Drosophila PP1 alpha 1 and PP1 beta show 89% amino acid sequence identity to rabbit PP1 alpha (330 amino acids) [Cohen, P.T.W. (1988) FEBS Lett. 232, 17-23] and PP1 beta (327 amino acids), respectively, demonstrating that the structures of both isoforms are among the most conserved proteins known throughout the evolution of the animal kingdom. The presence of characteristic structural differences between PP1 alpha and PP1 beta, which have been preserved from insects to mammals, implies that the alpha and beta isoforms may have distinct biological functions.  相似文献   

15.
The distribution of the extracellular matrix (ECM) protein, fibronectin (FN), has been examined ultrastructurally in noninjured and injured rat corneal endothelium in vivo and in vitro by immunoperoxidase cytochemistry. In noninjured endothelia, FN was observed within the rough endoplasmic reticulum (RER) cisternae but not along the cell-Descemet's membrane (DM) interface. Twenty-four and 48 h after a circular freeze injury, immunoperoxidase reaction product was detected at the cell-DM interface as well as within cytoplasmic vesicles and intercellular spaces. By 1 and 2 wk post-injury, a line of reaction product could still be demonstrated at the cell-DM interface and evidence for newly deposited basement membrane material was observed in this region. In order to understand whether fibronectin deposition during wound repair was dependent on cytoskeletal influences, organ culture experiments were performed in which the media was supplemented with either 10(-8) M colchicine or 2.5 X 10(-3) M cytochalasin B. Without inhibitors, injured corneas cultured for 24 h had FN deposition at the cell-DM interface similar to the in vivo results. Corneas cultured in the presence of cytochalasin B also showed FN deposition at the cell-DM interface. However, when injured endothelia were cultured in the presence of colchicine, no reaction product was observed at the cell-DM interface, although it could be detected intracellularly within RER. Incubating the tissues in the presence of puromycin abolished all extracellular and intracellular staining. These results indicate that during wound repair, corneal endothelial cells produce fibronectin and deposit it upon Descemet's membrane by a mechanism that may be mediated by microtubules.  相似文献   

16.
Lebart MC  Benyamin Y 《The FEBS journal》2006,273(15):3415-3426
Cells offer different types of cytoskeletal anchorages: transitory structures such as focal contacts and perennial ones such as the sarcomeric cytoskeleton of muscle cells. The turnover of these structures is controlled with different timing by a family of cysteine proteases activated by calcium, the calpains. The large number of potential substrates present in each of these structures imposes fine tuning of the activity of the proteases to avoid excessive action. This phenomenon is thus guaranteed by various types of regulation, ranging from a relatively high calcium concentration necessary for activation, phosphorylation of substrates or the proteases themselves with either a favorable or inhibitory effect, possible intervention of phospholipids, and the presence of a specific inhibitor and its possible degradation before activation. Finally, formation of multiprotein complexes containing calpains offers a new method of regulation.  相似文献   

17.
Ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-related (ATR) kinases are conserved regulators of cellular responses to double strand breaks (DSBs). During meiosis, however, the functions of these kinases in DSB repair and the deoxyribonucleic acid (DNA) damage checkpoint are unclear. In this paper, we show that ATM and ATR have unique roles in the repair of meiotic DSBs in Drosophila melanogaster. ATR mutant analysis indicated that it is required for checkpoint activity, whereas ATM may not be. Both kinases phosphorylate H2AV (γ-H2AV), and, using this as a reporter for ATM/ATR activity, we found that the DSB repair response is surprisingly dynamic at the site of DNA damage. γ-H2AV is continuously exchanged, requiring new phosphorylation at the break site until repair is completed. However, most surprising is that the number of γ-H2AV foci is dramatically increased in the absence of ATM, but not ATR, suggesting that the number of DSBs is increased. Thus, we conclude that ATM is primarily required for the meiotic DSB repair response, which includes functions in DNA damage repair and negative feedback control over the level of programmed DSBs during meiosis.  相似文献   

18.
《Cell Stem Cell》2022,29(6):933-947.e6
  1. Download : Download high-res image (158KB)
  2. Download : Download full-size image
  相似文献   

19.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The rate of energy-dependent transfer of pro-OmpA across Escherichia coli inner membrane vesicles in vitro was found to be a function of the ATP concentration. At concentrations above 0.1 mM ATP, the addition of a transmembrane electrochemical potential (proton motive force or pmf) increased the rate of pro-OmpA translocation. Additional experiments demonstrated that the overall reaction proceeded by at least two distinct energy-requiring steps. The first step required only ATP, was nearly unaffected by the pmf, and resulted in the insertion of the amino-terminal domain of pro-OmpA across the membrane. The insertion exposed the signal sequence cleavage site to the periplasmic side of the membrane, as measured by the appearance of a mature length translocation intermediate. However, this intermediate was partially exposed to the cytoplasmic side of the membrane. In a second energy-dependent step, either ATP or the pmf was sufficient to complete the translocation of mature length OmpA across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号