首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin (IL)-15 is able to regulate tight junction formation in intestinal epithelial cells. However, the mechanisms that regulate the intestinal barrier function in response to IL-15 and the involved subunits of the IL-15 ligand-receptor system are unknown. We determined the IL-2Rbeta subunit and IL-15-dependent regulation of tight junction-associated proteins in the human intestinal epithelial cell line T-84. The IL-2Rbeta subunit was expressed and induced signal transduction in caveolin enriched rafts in intestinal epithelial cells. IL-15-mediated tightening of intestinal epithelial monolayers correlated with the enhanced recruitment of tight junction proteins into Triton X-100-insoluble protein fractions. IL-15-mediated up-regulation of ZO-1 and ZO-2 expression was independent of the IL-2Rbeta subunit, whereas the phosphorylation of occludin and enhanced membrane association of claudin-1 and claudin-2 by IL-15 required the presence of the IL-2Rbeta subunit. Recruitment of claudins and hyperphosphorylated occludin into tight junctions resulted in a more marked induction of tight junction formation in intestinal epithelial cells than the up-regulation of ZO-1 and ZO-2 by itself. The regulation of the intestinal epithelial barrier function by IL-15 involves IL-2Rbeta-dependent and -independent signaling pathways leading to the recruitment of claudins, hyperphosphorylated occludin, ZO-1, and ZO-2 into the tight junctional protein complex.  相似文献   

2.
In the Madin-Darby canine kidney epithelial cell line, the proteins occludin and ZO-1 are structural components of the tight junctions that seal the paracellular spaces between the cells and contribute to the epithelial barrier function. In Ras-transformed Madin-Darby canine kidney cells, occludin, claudin-1, and ZO-1 were absent from cell-cell contacts but were present in the cytoplasm, and the adherens junction protein E-cadherin was weakly expressed. After treatment of the Ras-transformed cells with the mitogen-activated protein kinase kinase (MEK1) inhibitor PD98059, which blocks the activation of mitogen-activated protein kinase (MAPK), occludin, claudin-1, and ZO-1 were recruited to the cell membrane, tight junctions were assembled, and E-cadherin protein expression was induced. Although it is generally believed that E-cadherin-mediated cell-cell adhesion is required for tight junction assembly, the recruitment of occludin to the cell-cell contact area and the restoration of epithelial cell morphology preceded the appearance of E-cadherin at cell-cell contacts. Both electron microscopy and a fourfold increase in the transepithelial electrical resistance indicated the formation of functional tight junctions after MEK1 inhibition. Moreover, inhibition of MAPK activity stabilized occludin and ZO-1 by differentially increasing their half-lives. We also found that during the process of tight junction assembly after MEK1 inhibition, tyrosine phosphorylation of occludin and ZO-1, but not claudin-1, increased significantly. Our study demonstrates that down-regulation of the MAPK signaling pathway causes the restoration of epithelial cell morphology and the assembly of tight junctions in Ras-transformed epithelial cells and that tyrosine phosphorylation of occludin and ZO-1 may play a role in some aspects of tight junction formation.  相似文献   

3.
As the only barrier between blood and bile compartments hepatocellular tight junctions play a crucial role in cholestasis-induced increase of biliary permeability. The molecular basis of this reversible defect is not known. We, therefore, examined expression, phosphorylation, distribution and colocalization of the junctional proteins occludin, claudin-1-3, ZO-1 and ZO-2 in rats after bile duct ligation and release of ligation. In control rats, claudin-1 and ZO-2 displayed a lobular gradient with highest expression levels in periportal cells, whereas claudin-2 showed a reciprocal distribution. Other proteins were evenly expressed in the liver lobule. Ligation resulted in upregulation of ZO-2 (2.7-fold), ZO-1 (1.4-fold) and occludin (1.2-fold) but not of claudins. Only ZO-2 showed increased phosphorylation. Distribution patterns were unchanged except for a strong accumulation of ZO-2 in perivenous hepatocytes. Colocalization analysis demonstrated that perivenous ZO-2 was the only protein examined revealing strongly increased overlap with occludin and ZO-1, whereas claudins and other proteins displayed a decrease. All changes were partially reversed by release of ligation. We conclude that differential expression of claudin-1-2 and ZO-2 has functional implications for bile formation. The moderately increased ZO-1 and occludin levels account for the known elongation of tight junction strands. The highly increased expression and changed distribution of ZO-2 suggests that ZO-1 is partly substituted by ZO-2, an alteration possibly causing impaired barrier function.  相似文献   

4.
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.  相似文献   

5.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

6.
Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tight junction organization using MKN28, a human gastric epithelial cell line that expresses claudin-3, claudin-4, claudin-7, zonula occludens (ZO)-1, and occludin, but not claudin-2 or claudin-5, as determined by immunoblot analysis and immunofluorescent staining. Aspirin (5 mM) treatment of MKN28 gastric epithelial monolayers significantly decreased transepithelial electrical resistance and increased dextran permeability. Both aspirin-mediated permeability and phosphorylation of p38 MAPK were significantly attenuated by SB-203580 (a p38 MAPK inhibitor) but not by U-0126 (a MEK1 inhibitor) or SP-600125 (a JNK inhibitor). Aspirin significantly decreased the quantity of claudin-7 protein produced by MKN28 cells but not the quantity of claudin-3, claudin-4, ZO-1, or occludin. The aspirin-induced decrease in claudin-7 protein was completely abolished by SB-203580 pretreatment. These results demonstrate, for the first time, that claudin-7 protein is important in aspirin-induced gastric barrier loss and that p38 MAPK activity mediates this epithelial barrier dysfunction. tight junction; p38 mitogen-activated protein kinase; permeability  相似文献   

7.
Constitutive activation of Ras or Ras-mediated signaling pathways is one of the initial steps during tumorigenesis that promotes neoplastic transformation. Recently it was reported that in Ha-Ras overexpressing MDCK cells the tight junction proteins claudin-1, occludin and ZO-1 were absent at cell-cell contact sites but present in the cytoplasm. Inhibition of MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the tight junction barrier function in MDCK cells. In order to evaluate the relevance of the MEK1 pathway in tight junction regulation in breast cancer cells, we investigated the effect ofMEK1 inhibition on expression of claudin-1, occludin and ZO-1 in natively claudin-1 expressing T47-D cells (low Ras activity), claudin-1 negative MCF-7 cells (elevated Ras activity) as well as two retroviral claudin-1 transduced MCF-7 daughter cell lines with prominent membrane and cytoplasmic claudin-1 dominant homing, respectively. Although we effectively blocked phosphorylation of MAPKs ERK-1 and ERK-2 using the selective MEK1 inhibitor PD98059, no quantitative changes of mRNA or protein levels of claudin-1, occludin and ZO-1 could be detected in all cell lines investigated. Furthermore, immnfluorescence analysis of claudin-1 revealed that inhibition of the MAPK pathway did not alter th e subcellular cytoplasmic distribution of claudin-1 to be more membrane specific. Finally, the diffusion barrier properties of tight junctions as analyzed by transepithelial resistance (TER) or paracellular flux analysis of 3 and 40 kDa dextran of tight junctions were not altered in the claudin-1 positive T47-D and the MCF-7 cell lines. Our findings indicate that the proposed involvement of the Ras-MEK-ERK pathway is likely not involved in the dysregulated tight junction formation in breast tumor cells and indicates that elevated activity of Ras might not be of general importance for the disruption of tight junction structures in breast tumors.  相似文献   

8.
Study of claudin function by RNA interference   总被引:12,自引:0,他引:12  
Claudins are tight junction proteins that play a key selectivity role in the paracellular conductance of ions. Numerous studies of claudin function have been carried out using the overexpression strategy to add new claudin channels to an existing paracellular protein background. Here, we report the systematic knockdown of endogenous claudin gene expression in Madin-Darby canine kidney (MDCK) cells and in LLC-PK1 cells using small interfering RNA against claudins 1-4 and 7. In MDCK cells (showing cation selectivity), claudins 2, 4, and 7 are powerful effectors of paracellular Na+ permeation. Removal of claudin-2 depressed the permeation of Na+ and resulted in the loss of cation selectivity. Loss of claudin-4 or -7 expression elevated the permeation of Na+ and enhanced the proclivity of the tight junction for cations. On the other hand, LLC-PK1 cells express little endogenous claudin-2 and show anion selectivity. In LLC-PK1 cells, claudin-4 and -7 are powerful effectors of paracellular Cl- permeation. Knockdown of claudin-4 or -7 expression depressed the permeation of Cl- and caused the tight junction to lose the anion selectivity. In conclusion, claudin-2 functions as a paracellular channel to Na+ to increase the cation selectivity of the tight junction; claudin-4 and -7 function either as paracellular barriers to Na+ or as paracellular channels to Cl-, depending upon the cellular background, to decrease the cation selectivity of the tight junction.  相似文献   

9.
Occludin, the putative tight junction integral membrane protein, is an attractive candidate for a protein that forms the actual sealing element of the tight junction. To study the role of occludin in the formation of the tight junction seal, synthetic peptides (OCC1 and OCC2) corresponding to the two putative extracellular domains of occludin were assayed for their ability to alter tight junctions in Xenopus kidney epithelial cell line A6. Transepithelial electrical resistance and paracellular tracer flux measurements indicated that the second extracellular domain peptide (OCC2) reversibly disrupted the transepithelial permeability barrier at concentrations of < 5 μM. Despite the increased paracellular permeability, there were no changes in gross epithelial cell morphology as determined by scanning EM. The OCC2 peptide decreased the amount of occludin present at the tight junction, as assessed by indirect immunofluorescence, as well as decreased total cellular content of occludin, as assessed by Western blot analysis. Pulse-labeling and metabolic chase analysis suggested that this decrease in occludin level could be attributed to an increase in turnover of cellular occludin rather than a decrease in occludin synthesis. The effect on occludin was specific because other tight junction components, ZO-1, ZO-2, cingulin, and the adherens junction protein E-cadherin, were unaltered by OCC2 treatment. Therefore, the peptide corresponding to the second extracellular domain of occludin perturbs the tight junction permeability barrier in a very specific manner. The correlation between a decrease in occludin levels and the perturbation of the tight junction permeability barrier provides evidence for a role of occludin in the formation of the tight junction seal.  相似文献   

10.
Claudin-1 contributes to the epithelial barrier function in MDCK cells   总被引:12,自引:0,他引:12  
Tight junctions (TJs) create a paracellular permeability barrier and also act as a fence preventing intermixing of proteins and lipids between the apical and basolateral plasma membranes. Recently, claudin-1 has been identified as an integral membrane protein localizing at TJs, and introduced claudin-1 can form TJ-like networks in fibroblasts. To investigate the function of claudin-1, MDCK cells were transfected with a mammalian expression vector containing myc-tagged mouse claudin-1, and four stable clones were obtained. The myc-tagged claudin-1 precisely colocalized with both occludin and ZO-1 at cell-cell contact sites, indicating that exogenous claudin-1 was properly targeted to the TJs. Immunoblot analysis revealed that overexpression of claudin-1 increased expression of ZO-1 but not of occludin or ZO-2. The barrier functions of these cells were evaluated by transepithelial electrical resistance (TER) and paracellular flux. Claudin-1-expressing cells exhibited about four times higher TER than wild-type MDCK cells. Consistent with the increase of TER, the cells overexpressing claudin-1 showed reduced paracellular flux, estimated at 4 and 40 kD FITC-dextrans. These results suggest that claudin-1 is involved in the barrier function at TJs.  相似文献   

11.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

12.
13.
Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009)  相似文献   

14.
Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1-containing cell-cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.  相似文献   

15.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

16.
ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.  相似文献   

17.
18.
19.
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed.  相似文献   

20.
Occludin is a transmembrane protein of the tight junction with two extracellular loops. Our previous demonstration that the extracellular loops are adhesive suggested the possibility that they contribute to localizing occludin at the tight junction. To address this question, truncated forms of occludin were generated in which one or both of the extracellular loops were deleted. These constructs were expressed in both occludin-null Rat-1 fibroblasts and in MDCK epithelial cells. The patterns of sensitivity to proteinase K suggested all constructs were present on the plasma membrane and retained the normal topology. In fibroblasts, all truncated forms of occludin colocalized with ZO-1 at regions of cell-cell contact, demonstrating that even in the absence of tight junctions cytoplasmic interactions with ZOs is sufficient to cluster occludin. In MDCK cell monolayers, both full-length and occludin lacking the first extracellular loop colocalized with ZO-1 at the tight junction. In contrast, constructs lacking the second, or both, extracellular loops were absent from tight junctions and were found only on the basolateral cell surface. By freeze-fracture electron microscopic analysis, overexpression of full length occludin induced side-to-side aggregation of fibrils within the junction, while excess occludin on the lateral membrane did not form fibrils. These results suggest that the second extracellular domain is required for stable assembly of occludin in the tight junction and that occludin influences the structural organization of the paracellular barrier. Received: 26 June 2000/Revised: 25 September 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号