首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.  相似文献   

3.
4.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

5.
6.
《FEBS letters》2014,588(9):1706-1714
MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0–G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells.  相似文献   

7.
8.
Huang TC  Chang HY  Chen CY  Wu PY  Lee H  Liao YF  Hsu WM  Huang HC  Juan HF 《FEBS letters》2011,585(22):3582-3586
Neuroblastoma is the most common extracranial solid tumor in children. We investigate whether miR-124, the abundant neuronal miRNA, plays a pivotal role in neuroblastoma. Knockdown of miR-124 promotes neuroblastoma SK-N-SH cell differentiation, cell cycle arrest and apoptosis. Further miR-124 is predicted to target aryl hydrocarbon receptor (AHR) which may promote neuroblastoma cell differentiation. We validate that miR-124 may suppress the expression of AHR by targeting its 3'-UTR. These results suggest that miR-124 could serve as a potential therapeutic target of neuroblastoma.  相似文献   

9.
10.
11.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

12.
Dorsal and ventral specification in the early optic vesicle appears to play a crucial role in the proper development of the eye. In the present study, we performed embryonic transplantation and organ culturing of the chick optic vesicle in order to investigate how the dorsal-ventral (D-V) polarity is established in the optic vesicle and what role this polarity plays in proper eye development. The left optic vesicle was cut and transplanted inversely in the right eye cavity of host chick embryos. This method ensured that the D-V polarity was reversed while the anteroposterior axis remained normal. The results showed that the location of the choroid fissure was altered from the normal (ventral) to ectopic positions as the embryonic stage of transplantation progressed from 6 to 18 somites. At the same time, the shape of the optic vesicle and the expression patterns of Pax2 and Tbx5, marker genes for ventral and dorsal regions of the optic vesicle, respectively, changed concomitantly in a similar way. The crucial period was between the 8- and 14-somite stages, and during this period the polarity seemed to be gradually determined. In ovo explant culturing of the optic vesicle showed that the D-V polarity and choroid fissure formation were already specified by the 10-somite stage. These results indicate that the D-V polarity of the optic vesicle is established gradually between 8- and 14-somite stages under the influence of signals derived from the midline portion of the forebrain. The presumptive signal(s) appeared to be transmitted from proximal to distal regions within the optic vesicle. A severe anomaly was observed in the development of optic vesicles reversely transplanted around the 10-somite stage: the optic cup formation was disturbed and subsequently the neural retina and pigment epithelium did not develop normally. We concluded that establishment of the D-V polarity in the optic vesicle plays an essential role in the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

13.
MicroRNA regulates gene expression, is involved in many cellular processes, and plays an important role in the development of cancer. The regulation of the expression of miRNA genes can be achieved by methylating their CpG islands, which is shown in different types of tumors. The methylation of miRNA genes in clear cell renal cell carcinoma (CCRCC) has mainly been studied for the miR-9 and miR-34 families. The methylation of six miRNA genes (miR-124a-2, -124a-3, -9-1, -9-3, -34b/c, -129-2) was analyzed with using a representative sample (46 cases). Methylation of three genes miR -124a-2, -124a-3, and -129-2 was studied in kidney tumors for the first time. Methylation analysis was performed using methyl specific PCR. It is shown that the frequency of methylation of six genes was changed from 37% to 65% in tumor samples and significantly higher in tumor samples than in samples of histologically normal tissue (P ≤ 3 × 10?5 by Fisher’s exact test). These results suggest the properties of tumor suppressors for the six miRNA genes indicated in CCRCC. We also found correlations between the methylation frequency of some miRNA genes and signs of the progression of CCRCC (tumor size, clinical stage, loss of differentiation, and metastasis).  相似文献   

14.
The ventral region of the chick embryo optic cup undergoes a complex process of differentiation leading to the formation of four different structures: the neural retina, the retinal pigment epithelium (RPE), the optic disk/optic stalk, and the pecten oculi. Signaling molecules such as retinoic acid and sonic hedgehog have been implicated in the regulation of these phenomena. We have now investigated whether the bone morphogenetic proteins (BMPs) also regulate ventral optic cup development. Loss-of-function experiments were carried out in chick embryos in ovo, by intraocular overexpression of noggin, a protein that binds several BMPs and prevents their interactions with their cognate cell surface receptors. At optic vesicle stages of development, this treatment resulted in microphthalmia with concomitant disruption of the developing neural retina, RPE and lens. At optic cup stages, however, noggin overexpression caused colobomas, pecten agenesis, replacement of the ventral RPE by neuroepithelium-like tissue, and ectopic expression of optic stalk markers in the region of the ventral retina and RPE. This was frequently accompanied by abnormal growth of ganglion cell axons, which failed to enter the optic nerve. The data suggest that endogenous BMPs have significant effects on the development of ventral optic cup structures.  相似文献   

15.
16.
17.
18.
19.
20.
MicroRNAs (miRNAs) have been implicated as regulators of central nervous system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-specific miRNA. On the basis of the evolutionary conservation of its expression in the CNS, miR-124 is expected to have an ancient conserved function. Intriguingly, investigation of miR-124 function using antisense-mediated miRNA depletion has produced divergent and in some cases contradictory findings in a variety of model systems. Here we investigated miR-124 function using a targeted knockout mutant and present evidence for a role during central brain neurogenesis in Drosophila melanogaster. miR-124 activity in the larval neuroblast lineage is required to support normal levels of neuronal progenitor proliferation. We identify anachronism (ana), which encodes a secreted inhibitor of neuroblast proliferation, as a functionally important target of miR-124 acting in the neuroblast lineage. ana has previously been thought to be glial specific in its expression and to act from the cortex glia to control the exit of neuroblasts from quiescence into the proliferative phase that generates the neurons of the adult CNS during larval development. We provide evidence that ana is expressed in miR-124-expressing neuroblast lineages and that ana activity must be limited by the action of miR-124 during neuronal progenitor proliferation. We discuss the possibility that the apparent divergence of function of miR-124 in different model systems might reflect functional divergence through target site evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号