首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Flora》2014,209(12):718-724
Sprouting is recognized as an important genet persistence strategy for clonal woody plants, but the role of sprouting may differ between species and between sexes, depending on physiological integration. We tested the effect of physiological integration on the mortality, recruitment and growth of the sprouting male and female ramets of two closely related dioecious shrubs of Lindera, in a field experiment using girdling manipulation. Although between-sex differences observed were obscure, we found between-species differences in the sprouting patterns. The rates of ramet mortality and recruitment were significantly lower for L. praecox than L. triloba. In L. praecox genets, the ramet production was low, and the main ramets might actively translocate assimilates towards the small sprouted ramets, which then facilitates high ramet growth and survival (sprout-nursing strategy). Meanwhile, in L. triloba genets, although many ramets were recruited, assimilate translocation from the main ramets to the sprouted ramets might be less abundant, which causes high ramet mortality (sprout-turnover strategy). For a more general knowledge of the various sprouting strategies in clonal plants, our study demonstrated that inter-specific comparisons using girdling experiments at the whole-plant level could reveal the role of physiological integration on the link between the sprouting pattern and above-ground structures of clonal plants.  相似文献   

2.

Background and Aims

Submergence and de-submergence are common phenomena encountered by riparian plants due to water level fluctuations, but little is known about the role of physiological integration in clonal plants (resource sharing between interconnected ramets) in their adaptation to such events. Using Alternanthera philoxeroides (alligator weed) as an example, this study tested the hypotheses that physiological integration will improve growth and photosynthetic capacity of submerged ramets during submergence and will promote their recovery following de-submergence.

Methods

Connected clones of A. philoxeroides, each consisting of two ramet systems and a stolon internode connecting them, were grown under control (both ramet systems untreated), half-submerged (one ramet system submerged and the other not submerged), fully submerged (both ramet systems submerged), half-shaded (one ramet system shaded and the other not shaded) and full-shaded (both ramet systems shaded) conditions for 30 d and then de-submerged/de-shaded for 20 d. The submerged plants were also shaded to very low light intensities, mimicking typical conditions in turbid floodwater.

Key Results

After 30 d of submergence, connections between submerged and non-submerged ramets significantly increased growth and carbohydrate accumulation of the submerged ramets, but decreased the growth of the non-submerged ramets. After 20 d of de-submergence, connections did not significantly affect the growth of either de-submerged or non-submerged ramets, but de-submerged ramets had high soluble sugar concentrations, suggesting high metabolic activities. The shift from significant effects of integration on both submerged and non-submerged ramets during the submergence period to little effect during the de-submergence period was due to the quick recovery of growth and photosynthesis. The effects of physiological integration were not found to be any stronger under submergence/de-submergence than under shading/de-shading.

Conclusions

The results indicate that it is not just the beneficial effects of physiological integration that are crucial to the survival of riparian clonal plants during periods of submergence, but also the ability to recover growth and photosynthesis rapidly after de-submergence, which thus allows them to spread.  相似文献   

3.

Background and Aims

Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation.

Methods

In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits.

Key Results

Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection.

Conclusions

Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.  相似文献   

4.
Sui Y  He W  Pan X  Dong M 《Annals of botany》2011,107(4):693-697

Background and Aims

Mechanical stimulation (MS) often induces plants to undergo thigmomorphogenesis and to synthesize an array of signalling substances. In clonal plants, connected ramets often share resources and hormones. However, little is known about whether and how clonal integration influences the ability of clonal plants to withstand MS. We hypothesized that the effects of MS may be modulated by clonal integration.

Methods

We conducted an experiment in which ramet pairs of Leymus secalinus were subjected to three treatments: (1) connected ramet pairs under a homogeneous condition [i.e. the proximal (relatively old) and distal (relatively young) ramets were not mechanically stressed]; (2) connected ramet pairs under a heterogeneous condition (i.e. the proximal ramet was mechanically stressed but the distal ramet was not); and (3) disconnected ramet pairs under the same condition as in treatment 2. At the end of the experiment, we harvested all plants and determined their biomass and allocation.

Key Results

Clonal integration had no significant influence on measured traits of distal L. secalinus ramets without MS. However, under MS, plants with distal ramets that were connected to a mother ramet produced more total plant biomass, below-ground biomass, ramets and total rhizome length than those that were not connected. Partial MS exerted local effects on stimulated ramets and remote effects on connected unstimulated ramets. Partial MS increased total biomass, root/shoot ratio, number of ramets and total rhizome length of stimulated proximal ramets, and increased total biomass, root weight ratio, number of ramets and total rhizome length of connected unstimulated ramets due to clonal integration.

Conclusions

These findings suggest that thigmomorphogenesis may protect plants from the stresses caused by high winds or trampling and that thigmomorphogenesis can be strongly modulated by the degree of clonal integration.  相似文献   

5.

Background and Aims

One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium).

Methods

The experimental design consisted of three factors, ‘integration’ (connected, severed) ‘water status’ (well watered, water stressed) and ‘nitrogen form’ (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies.

Key Results

Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ15N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ15N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis.

Conclusions

This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower in plants supplied with ammonium than in plants supplied with nitrate, and therefore preferential transport of ammonium from parents to water-stressed offspring could potentially optimize the water use of the whole clone.  相似文献   

6.

Background and Aims

One of the special properties of clonal plants is the capacity for physiological integration, which can increase plant performance through mechanisms such as resource sharing and co-ordinated phenotypic plasticity when plants grow in microsites with contrasting resource availabilities. However, many clonal plants are colonized by arbuscular mycorrhizal fungi (AMF). Since AMF are likely to reduce contrasts in effective resource levels, they could also reduce these effects of clonal integration on plasticity and performance in heterogeneous environments.

Methods

To test this hypothesis, pairs of connected and disconnected ramets of the stoloniferous herb Trifolium repens were grown. One ramet in a pair was given high light and low nutrients while the other ramet was given high nutrients and low light. The pairs were inoculated with zero, one or five species of AMF.

Key Results

Pairs of ramets grown without AMF developed division of labour and benefited from resource sharing, as indicated by effects of connection on allocation to roots, accumulation of mass, and ramet production. Inoculation with five species of AMF significantly reduced these effects of connection, both by inhibiting them in ramets given high nutrients and inducing them in ramets given high light. Inoculation with one species of AMF also reduced some effects of connection, but generally to a lesser degree.

Conclusions

The results show that AMF can significantly modify the effects of clonal integration on the plasticity and performance of clonal plants in heterogeneous environments. In particular, AMF may partly replace the effects and benefits of clonal integration in low-nutrient habitats, possibly more so where species richness of AMF is high. This provides the first test of interaction between colonization by AMF and physiological integration in a clonal plant, and a new example of how biotic and abiotic factors could interact to determine the ecological importance of clonal growth.Key words: Arbuscular mycorrhizal fungi, biomass allocation, clonal plant, division of labour, environmental heterogeneity, light availability, nutrients, white clover  相似文献   

7.

Background and Aims

Rubus chamaemorus (cloudberry) is a herbaceous clonal peatland plant that produces an extensive underground rhizome system with distant ramets. Most of these ramets are non-floral. The main objectives of this study were to determine: (a) if plant growth was source limited in cloudberry; (b) if the non-floral ramets translocated carbon (C) to the fruit; and (c) if there was competition between fruit, leaves and rhizomes for C during fruit development.

Methods

Floral and non-floral ramet activities were monitored during the period of flower and fruit development using three approaches: gas exchange measurements, 14CO2 labelling and dry mass accumulation in the different organs. Source and sink activity were manipulated by eliminating leaves or flowers or by reducing rhizome length.

Key Results

Photosynthetic rates were lower in floral than in deflowered ramets. Autoradiographs and 14C labelling data clearly indicated that fruit is a very strong sink for the floral ramet, whereas non-floral ramets translocated C toward the rhizome but not toward floral ramets. Nevertheless, rhizomes received some C from the floral ramet throughout the fruiting period. Ramets with shorter rhizomes produced smaller leaves and smaller fruits, and defoliated ramets produced very small fruits.

Conclusions

Plant growth appears to be source-limited in cloudberry since a reduction in sink strength did not induce a reduction in photosynthetic activity. Non-floral ramets did not participate directly to fruit development. Developing leaves appear to compete with the developing fruit but the intensity of this competition could vary with the specific timing of the two organs. The rhizome appears to act both as a source but also potentially as a sink during fruit development. Further studies are needed to characterize better the complex role played by the rhizome in fruit C nutrition.Key words: Allocation pattern, 14C labelling, carbon translocation, carbon reserves, cloudberry, defoliation, fruit production, gas exchange, Rubus chamaemorus, source–sink relationship, flowering  相似文献   

8.

Background and Aims

Girdling, or the removal of a strip of bark around a tree''s outer circumference, is often used to study carbon relationships, as it triggers several carbon responses which seem to be interrelated.

Methods

An existing plant model describing water and carbon transport in a tree was used to evaluate the mechanisms behind the girdling responses. Therefore, the (un)loading functions of the original model were adapted and became a function of the phloem turgor pressure.

Key Results

The adapted model successfully simulated the measured changes in stem growth induced by girdling. The model indicated that the key driving variables for the girdling responses were changes in turgor pressure due to local changes in sugar concentrations. Information about the local damage to the phloem system was transferred to the other plant parts (crown and roots) by a change in phloem pressure. After girdling, the loading rate was affected and corresponded to the experimentally observed feedback inhibition. In addition, the unloading rate decreased after girdling and even reversed in some instances. The model enabled continuous simulation of changes in starch content, although a slight underestimation was observed compared with measured values.

Conclusions

For the first time a mechanistic plant model enabled simulation of tree girdling responses, which have thus far only been experimentally observed and fragmentally reported in literature. The close agreement between measured and simulated data confirms the underlying mechanisms introduced in the model.  相似文献   

9.

Background and Aims

In clonal plants producing vegetative offspring, performance at the genet level as well as at the ramet level should be investigated in order to understand the entire picture of the population dynamics and the life history characteristics. In this study, demography, including reproduction and survival, the growth patterns and the spatial distributions of ramets within genets of the clonal herb Convallaria keiskei were explored.

Methods

Vegetative growth, flowering and survival of shoots whose genets were identified using microsatellite markers were monitored in four study plots for 3 years (2003–2005). The size structures of ramets in genets and their temporal shifts were then analysed. Their spatial distributions were also examined.

Key Results

During the census, 274 and 149 ramets were mapped in two 1 × 2 m plots, and 83 and 94 ramets in two 2 × 2 m quadrats. Thirty-eight genotypes were identified from 580 samples. Each plot included 5–18 genets, and most ramets belonged to the predominant genet(s) in each plot. Shoots foliated yearly for several years, but flowering ramets did not have an inflorescence the next year. A considerable number of new clonal offspring persistently appeared, forming a bell-shaped curve of the size structure of ramets in each genet. Comparing the structures modelled by the normal distributions suggested variation among ramets belonging to a single genet and variation among genets. Furthermore, spatial analyses revealed clumped and distant distributions of ramet pairs in a genet, in which the distant patterns corresponded to the linearly elongating clonal growth pattern of this species.

Conclusion

Characteristics of ramet performances such as flowering and recruitment of clonal offspring, in addition to growth, played a large part in the regulation of genet dynamics and distribution, which were different among the studied genets. These might be characteristics particularly relevant to clonal life histories.Key words: Clonal plant, Convallaria keiskei, demography, genet, genetic identification, growth pattern, life history, ramet, spatial distribution  相似文献   

10.
Yu FH  Wang N  He WM  Chu Y  Dong M 《Annals of botany》2008,102(4):571-577

Background and Aims

Wind erosion is a severe stress for plants in drylands, but the mechanisms by which plants withstand erosion remain largely unknown. Here, the hypothesis is tested that maintaining rhizome connections helps plants to tolerate erosion.

Methods

Five transects were established across an inland dune in Inner Mongolia, China, and measurements were made of leaf number, biomass per ramet and rhizome depth of Psammochloa villosa in 45 plots. In 40 × 40 cm plots of P. villosa on another dune, the top 15 or 30 cm of sand was removed for 1·5 or 3 months to simulate short- and long-term moderate and severe erosion, respectively, with untreated plots as controls, and the rhizomes at the edges of half of the plots were severed to mimic loss of rhizome connections.

Key Results

Leaf number and biomass per ramet showed quadric relationships with rhizome depth; when rhizomes were exposed to the air, the associated ramets either died or became very weak. Ramet number, leaf number and biomass per plot decreased with increasing erosion severity. Rhizome connections did not affect these traits under control or short-term erosion, but increased them under long-term erosion.

Conclusions

Rhizome connections alleviated the negative effects of erosion on P. villosa, very likely because the erosion-stressed ramets received water and/or photosynthates translocated from those connected ramets that were not subject to erosion. This study provides the first evidence that maintaining rhizome connections helps plants to tolerate erosion in drylands.Key words: Clonal integration, inland-dune grass, Psammochloa villosa, resource sharing, rhizome severing, wind erosion  相似文献   

11.

Background and aims

In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions.

Methods

In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed.

Key results

The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches.

Conclusions

Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.  相似文献   

12.

Background and Aims

The combination of clonality and a mating system promoting outcrossing is considered advantageous because outcrossing avoids the fitness costs of selfing within clones (geitonogamy) while clonality assures local persistence and increases floral display. The spatial spread of genetically identical plants (ramets) may, however, also decrease paternal diversity (the number of sires fertilizing a given dam) and fertility, particularly towards the centre of large clumped clones. This study aimed to quantify the impact of extensive clonal growth on fine-scale paternity patterns in a population of the allogamous Convallaria majalis.

Methods

A full analysis of paternity was performed by genotyping all flowering individuals and all viable seeds produced during a single season using AFLP. Mating patterns were examined and the spatial position of ramets was related to the extent of multiple paternity, fruiting success and seed production.

Key Results

The overall outcrossing rate was high (91 %) and pollen flow into the population was considerable (27 %). Despite extensive clonal growth, multiple paternity was relatively common (the fraction of siblings sharing the same father was 0·53 within ramets). The diversity of offspring collected from reproductive ramets surrounded by genetically identical inflorescences was as high as among offspring collected from ramets surrounded by distinct genets. There was no significant relationship between the similarity of the pollen load received by two ramets and the distance between them. Neither the distance of ramets with respect to distinct genets nor the distance to the genet centre significantly affected fruiting success or seed production.

Conclusions

Random mating and considerable pollen inflow most probably implied that pollen dispersal distances were sufficiently high to mitigate local mate scarcity despite extensive clonal spread. The data provide no evidence for the intrusion of clonal growth on fine-scale plant mating patterns.  相似文献   

13.
Wang Z  Li Y  During HJ  Li L 《PloS one》2011,6(9):e25401

Background

When growing in reciprocal patches in terms of availability of different resources, connected ramets of clonal plants will specialize to acquire and exchange locally abundant resources more efficiently. This has been termed division of labour. We asked whether division of labour can occur physiologically as well as morphologically and will increase with patch contrasts.

Methodology/Principal Findings

We subjected connected and disconnected ramet pairs of Potentilla anserina to Control, Low, Medium and High patch contrast by manipulating light and nutrient levels for ramets in each pair. Little net benefit of inter-ramet connection in terms of biomass was detected. Shoot-root ratio did not differ significantly between paired ramets regardless of connection under Control, Low and Medium. Under High, however, disconnected shaded ramets with ample nutrients showed significantly larger shoot-root ratios (2.8∼6.5 fold) than fully-lit but nutrient-deficient ramets, and than their counterparts under any other treatment; conversely, fully-lit but nutrient-deficient ramets, when connected to shaded ramets with ample nutrients, had significantly larger shoot-root ratios (2.0∼4.9 fold) than the latter and than their counterparts under any other treatment. Only under High patch contrast, fully-lit ramets, if connected to shaded ones, had 8.9% higher chlorophyll content than the latter, and 22.4% higher chlorophyll content than their isolated counterparts; the similar pattern held for photosynthetic capacity under all heterogeneous treatments.

Conclusions/Significance

Division of labour in clonal plants can be realized by ramet specialization in morphology and in physiology. However, modest ramet specialization especially in morphology among patch contrasts may suggest that division of labour will occur when the connected ramets grow in reciprocal patches between which the contrast exceeds a threshold. Probably, this threshold patch contrast is the outcome of the clone-wide cost-benefit tradeoff and is significant for risk-avoidance, especially in the disturbance-prone environments.  相似文献   

14.

Background and Aims

Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression.

Methods

ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m2 quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity.

Key Results

High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations.

Conclusions

Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in meristems results in high genotype diversity at the cost of pollen and ovule fertilities.  相似文献   

15.
16.

Background

Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention.

Methodology/Principal Findings

In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed).

Conclusions/Significance

Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.  相似文献   

17.

Background and Aims

The kiwifruit berry is characterized by an early stage of rapid growth, followed by a relatively long stage of slow increase in size. Vascular and transpiration flows are the main processes through which water and carbon enter/exit the fruit, determining the daily and seasonal changes in fruit size. This work investigates the biophysical mechanisms underpinning the change in fruit growth rate during the season.

Methods

The daily patterns of phloem, xylem and transpiration in/outflows have been determined at several stages of kiwifruit development, during two seasons. The different flows were quantified by comparing the diurnal patterns of diameter change of fruit, which were then girdled and subsequently detached while measurements continued. The diurnal courses of leaf and stem water potential and of fruit pressure potential were also monitored at different times during the season.

Key Results

Xylem and transpiration flows were high during the first period of rapid volume growth and sharply decreased with fruit development. Specific phloem import was lower and gradually decreased during the season, whereas it remained constant at whole-fruit level, in accordance with fruit dry matter gain. On a daily basis, transpiration always responded to vapour pressure deficit and contributed to the daily reduction of fruit hydrostatic pressure. Xylem flow was positively related to stem-to-fruit pressure potential gradient during the first but not the last part of the season, when xylem conductivity appeared to be reduced.

Conclusions

The fruit growth model adopted by this species changes during the season due to anatomical modifications in the fruit features.  相似文献   

18.

Background and Aims

The root apical meristem (RAM) is the plant stem cell niche which provides for the formation and continuous development of the root. Auxin is the main regulator of RAM functioning, and auxin maxima coincide with the sites of RAM initiation and maintenance. Auxin gradients are formed due to local auxin biosynthesis and polar auxin transport. The PIN family of auxin transporters plays a critical role in polar auxin transport, and two mechanisms of auxin maximum formation in the RAM based on PIN-mediated auxin transport have been proposed to date: the reverse fountain and the reflected flow mechanisms.

Methods

The two mechanisms are combined here in in silico studies of auxin distribution in intact roots and roots cut into two pieces in the proximal meristem region. In parallel, corresponding experiments were performed in vivo using DR5::GFP Arabidopsis plants.

Key Results

The reverse fountain and the reflected flow mechanism naturally cooperate for RAM patterning and maintenance in intact root. Regeneration of the RAM in decapitated roots is provided by the reflected flow mechanism. In the excised root tips local auxin biosynthesis either alone or in cooperation with the reverse fountain enables RAM maintenance.

Conclusions

The efficiency of a dual-mechanism model in guiding biological experiments on RAM regeneration and maintenance is demonstrated. The model also allows estimation of the concentrations of auxin and PINs in root cells during development and under various treatments. The dual-mechanism model proposed here can be a powerful tool for the study of several different aspects of auxin function in root.  相似文献   

19.

Background and Aims

The ‘hinged valve gap’ has been previously identified as the initial site of water entry (i.e. water gap) in physically dormant (PY) seeds of Geranium carolinianum (Geraniaceae). However, neither the ontogeny of the hinged valve gap nor acquisition of PY by seeds of Geraniaceae has been studied previously. The aims of the present study were to investigate the physiological events related to acquisition of PY and the ontogeny of the hinged valve gap and seed coat of G. carolinianum.

Methods

Seeds of G. carolinianum were studied from the ovule stage until dispersal. The developmental stages of acquisition of germinability, physiological maturity and PY were determined by seed measurement, germination and imbibition experiments using intact seeds and isolated embryos of both fresh and slow-dried seeds. Ontogeny of the seed coat and water gap was studied using light microscopy.

Key Results

Developing seeds achieved germinability, physiological maturity and PY on days 9, 14 and 20 after pollination (DAP), respectively. The critical moisture content of seeds on acquisition of PY was 11 %. Slow-drying caused the stage of acquisition of PY to shift from 20 to 13 DAP. Greater extent of cell division and differentiation at the micropyle, water gap and chalaza than at the rest of the seed coat resulted in particular anatomical features. Palisade and subpalisade cells of varying forms developed in these sites. A clear demarcation between the water gap and micropyle is not evident due to their close proximity.

Conclusions

Acquisition of PY in seeds of G. carolinianum occurs after physiological maturity and is triggered by maturation drying. The micropyle and water gap cannot be considered as two separate entities, and thus it is more appropriate to consider them together as a ‘micropyle–water-gap complex’.  相似文献   

20.

Background and Aims

Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA.

Methods

In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences.

Key Results

In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes.

Conclusions

The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号