首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M Jarsch  A B?ck 《Nucleic acids research》1983,11(21):7537-7544
The DNA sequence of the spacer (plus flanking) regions separating the 16S rRNA and 23S rRNA genes of two presumptive rDNA operons of the archaebacterium Methanococcus vannielii was determined. The spacers are 156 and 242 base pairs in size and they share a sequence homology of 49 base pairs following the 3' terminus of the 16S rRNA gene and of about 60 base pairs preceding the 5' end of the 23S rRNA gene. The 242 base pair spacer, in addition contains a sequence which can be transcribed into tRNAAla, whereas no tRNA-like secondary structure can be delineated from the 156 base pair spacer region. Almost complete sequence homology was detected between the end of the 16S rRNA gene and the 3' termini of either Escherichia coli or Halobacterium halobium 16S rRNA, whereas the putative 5' terminal 23S rRNA sequence shared partial homology with E. coli 23S rRNA and eukaryotic 5.8S rRNA.  相似文献   

3.
The terminal 220 base pairs (bp) of the gene for 18S rRNA and 18 bp of the adjoining spacer rDNA of the silkworm Bombyx mori have been sequenced. Comparison with the sequence of the 16S rRNA gene of Escherichia coli has shown that a region including 45 bp of the B. mori sequence at the 3' end is remarkably homologous with the 3' terminal E. coli sequence. Other homologies occur in the terminal regions of the 18S and 16S rRNAs, including a perfectly conserved stretch of 13 bp within a longer homology located 150--200 bp from the 3' termini. These homologies are the most extensive so far reported between prokaryotic and eukaryotic genomic DNA.  相似文献   

4.
5.
MOTIVATION: It is well accepted that the 3' end of 16S rRNA is directly involved in prokaryotic translation initiation by pairing with the Shine-Dalgarno (SD) sequence, which is located in the ribosome-binding site of mRNA. According to Shine and Dalgarno, Escherichia coli 's 5' UTR has the pattern of 'AGGAGG' (SD sequence), which is complementary to the 3' end sequence of 16S rRNA. In this work, we systematically calculated free-energy values of the base pairing between the 3' end of 16S rRNA and the 5' UTR of mRNA, in order to analyze the base-pairing potentials in various prokaryotes. The free-energy values were then plotted over distances from the start codon to visualize the free-energy pattern of 5'UTRs. RESULTS: The average free-energy values fell sharply before the start codon in E. coli, which is consistent with the model that the 3' end of 16S rRNA base pairs with the SD sequence. Haemophilus influenzae, Bacillus subtilis and Helicobacter pylori show a similar pattern, suggesting that the organisms have basically the same mechanism of translation initiation as E. coli. Other eubacteria, such as Synechocystis PCC6803, Mycoplasma genitalium, Mycoplasma pneumoniae and Borrelia burgdorferi also show decreases in their free-energy values, although they are less evident. We also did the same analysis with a eukaryote genome as a control; no fall in free-energy values was observed between the 3' end of 18S rRNA and 5' UTRs of Saccharomyces cerevisiae, suggesting that this organism does not base pair in translation initiation. The three archaebacteria A. fulgidus, M. jannaschii and M. thermoautotrophicum show patterns similar to eubacteria, but not to S. cerevisiae, indicating that archaebacteria are closer to eubacteria than to eukaryotes with respect to the mechanism of translation initiation. From these observations, it appears that the shape of the curve produced by the algorithm can be used to predict the mechanism of translation initiation. AVAILABILITY: The C programs used in our analysis are available upon request.  相似文献   

6.
Crude tRNA isolated from rat liver by the method of Rogg et al. (Biochem. Biophys. Acta 195, 13-15 1969) contains N6-dimethyladenosine (m6-2A) and was therefore fractionated in order to identify the m6-2A-containing RNAs. A unique species of RNA was purified which contained all the m62A present in the crude tRNA. Sequence analysis by postlabeling with gamma-32p-ATP and polynucleotide kinase revealed that this RNA represents the 32 nucleotides AAGGUUUC(C)U GUAGGUGm62Am62ACCUGCGGAAGGAUC from position 5 to 36 of the 3' terminus of ribosomal 18S RNA. The 36 nucleotide long sequence from the 3' end of rat liver 18S rRNA exhibits extensive homology with the corresponding sequence of E. coli 16S rRNA and with the 21 nucleotide long 3' terminal sequence so far known from Saccharomyces carlsbergensis 17S rRNA. A heterogeneity in this sequence provides the first evidence on the molecular level for the existence of (at least) two sets of redundant ribosomal 18S RNA genes in the rat.  相似文献   

7.
Hirao I  Harada Y  Nojima T  Osawa Y  Masaki H  Yokoyama S 《Biochemistry》2004,43(11):3214-3221
Colicin E3 is a ribonuclease that specifically cleaves at the site after A1493 of 16S rRNA in Escherichia coli ribosomes, thus inactivating translation. To analyze the interaction between colicin E3 and 16S rRNA, we used in vitro selection to isolate RNA ligands (aptamers) that bind to the C-terminal ribonuclease domain of colicin E3, from a degenerate RNA pool. Although the aptamers were not digested by colicin E3, they specifically bound to the protein (K(d) = 2-14 nM) and prevented the 16S rRNA cleavage by the C-terminal ribonuclease domain. Among these aptamers, aptamer F2-1 has a sequence similar to that of the region around the cleavage site from residue 1484 to 1506, including the decoding site, of E. coli 16S rRNA. The secondary structure of aptamer F2-1 was determined by the base pair covariation among the variants obtained by a second in vitro selection, using a doped RNA pool based on the aptamer F2-1 sequence. The sequence and structural similarities between the aptamers and 16S rRNA provide insights into the recognition of colicin E3 by this specific 16S rRNA region.  相似文献   

8.
Fragments of tRNA possessing a free TpsiC-loop or a free D-loop form stable complexes with the colicin fragment (1494-1542) of 16S ribosomal RNA from E. coli. The colicin fragment does not bind to tRNA in which the T-loop and the D-loop are involved in tertiary interactions. Colicin cleavage of the 16S rRNA from E. coli is inhibited by aminoacyl-tRNA or tRNA fragments, indicating that a similar interaction may take place on the intact 70S ribosomes. The oligonucleotide d(G-T-T-C-G-A)homologous to the conserved sequence G-T-psi-C-Pu-(m1)A in the TpsiC-region of many elongator tRNAs binds to the conserved sequence U-C-G-mU-A-A-C (1495-1501) of the 16S rRNA. It is suggested that the 3'-end of the 16S rRNA may provide the part of the binding site for the elongator tRNAs on bacterial ribosomes.  相似文献   

9.
10.
The nucleotide sequence of 16S rDNA from Euglena gracilis chloroplasts has been determined representing the first complete sequence of an algal chloroplast rRNA gene. The structural part of the 16S rRNA gene has 1491 nucleotides according to a comparative analysis of our sequencing results with the published 5'- and 3'-terminal "T1-oligonucleotides" from 16S rRNA from E. gracilis. Alignment with 16S rDNA from Zea mays chloroplasts and E. coli reveals 80 to 72% sequence homology, respectively. Two deletions of 9 and 23 nucleotides are found which are identical in size and position with deletions observed in 16S rDNA of maize and tobacco chloroplasts and which seem to be characteristic for all chloroplast rRNA species. We also find insertions and deletions in E. gracilis not seen in 16S rDNA of higher plant chloroplasts. The 16S rRNA sequence of E. gracilis chloroplasts can be folded by base pairing according to the general 16S rRNA secondary structure model.  相似文献   

11.
For various genes of E. coli, three regions (-55 to -1; -35 to -1; -21 to -1) 5' to AUG codon on mRNA were searched for sites of interaction with colicin fragment of 16S rRNA. The detailed sequence comparison points out that apart from Shine-Dalgarno base pairing, an additional ribosome-binding site, a subsequence of 5'-UGAUCC-3' invariably exists in mRNA for highly expressed genes. Poorly expressed genes appear to be controlled by only Shine-Dalgarno base pairing. The analysis indicates that in the initiator region, the -55 to -1 region contains the signal which decides the efficiency of the translation-initiation. The site on 16S rRNA, 5'-GGAUCA-3' at position 1529, that can base pair to the above site, has a recognition site on 23S rRNA at position 2390. In the light of the conserved nature and accessibility of these sites, it is proposed that the site on 16S rRNA plays a bifunctional role--initially it binds to mRNA from highly expressed genes to form a stable 30S initiation complex, and upon association with 50S subunit it exchanges base pairing with 23S rRNA, thus leaving the site on mRNA free.  相似文献   

12.
13.
本文测定了蓖麻蚕18S rRNA基因(rDNA) 3′末端及其外侧的DNA顺序。将这一顺序与家蚕、果蝇、大鼠 18S rDNA 3′末端顺序以及大肠杆菌16 S rDNA 3′末端顺序作了比较,发现它们间有惊人的同源性。不仅如此,这些基因的3′末端所形成的茎环结构也十分相似,在3′末端还有保守的EcoRI切点。这些研究结果对了解18S rRNA 3′末端在蛋白质合成中的功能及在rRNA前体加工成熟中的作用;对于了解rRNA基因的进化打下了基础。  相似文献   

14.
15.
16.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

17.
Ribosomal RNAs (rRNAs) (16S, 23S, 5S) encoded by the rrn operons and ribosomal proteins play a very important role in the formation of ribosomes and in the control of translation. Five copies of the rrn operon were reported by hybridization studies in Brevibacterium (Corynebacterium) lactofermentum but the genome sequence of Corynebacterium glutamicum provided evidence for six rrn copies. All six copies of the C. glutamicum 16S rRNA have a size of 1523 bp and each of the six copies of the 5S contain 120 bp whereas size differences are found between the six copies of the 23S rRNA. The anti-Shine-Dalgarno sequence at the 3'-end of the 16S rRNA was 5'-CCUCCUUUC-3'. Each rrn operon is transcribed as a large precursor rRNA (pre-rRNA) that is processed by RNaseIII and other RNases at specific cleavage boxes that have been identified in the C. glutamicum pre-rRNA. A secondary structure of the C. glutamicum 16S rRNA is proposed. The 16S rRNA sequence has been used as a molecular evolution clock allowing the deduction of a phylogenetic tree of all Corynebacterium species. In C. glutamicum, there are 11 ribosomal protein gene clusters encoding 42 ribosomal proteins. The organization of some of the ribosomal protein gene cluster is identical to that of Escherichia coli whereas in other clusters the organization of the genes is rather different. Some specific ribosomal protein genes are located in a different cluster in C. glutamicum when compared with E. coli, indicating that the control of expression of these genes is different in E. coli and C. glutamicum.  相似文献   

18.
19.
The nucleotide sequence of a region (leader region) preceding the 5'-end of 16S-23S rRNA gene region of Euglena gracilis chloroplast DNA was compared with the homologous sequences that code for the 16S-23S rRNA operons of Euglena and E. coli. The leader region shows close homology in sequence to the 16S-23S rRNA gene region of Euglena (Orozco et al. (1980) J. Biol.Chem. 255, 10997-11003) as well as to the rrnD operon of E. coli, suggesting that it was derived from the 16S-23S rRNA gene region by gene duplication. It was shown that the leader region had accumulated nucleotide substitutions at an extremely rapid rate in its entirety, similar to the rate of tRNAIle pseudogene identified in the leader region. In addition, the leader region shows an unique base content which is quite distinct from those of 16S-23S rRNA gene regions of Euglena and E. coli, but again is similar to that of the tRNAIle pseudogene. The above two results strongly suggest that the leader region contains a pseudogene cluster which was derived from a gene cluster coding for the functional 16S-23S rRNA operon possibly by imperfect duplication during evolution of Euglena chloroplast DNA.  相似文献   

20.
We have determined the sequences of the 3'-terminal approximately 100 nucleotides of [5' -32P]pCp-labeled wheat mitochondrial, wheat cytosol, and E. coli small sub-unit rRNAs. Sequence comparison demonstrates that within this region, there is a substantially greater degree of homology between wheat mitochondrial 18S and E. coli 16S rRNAs than between either of these and wheat cytosol 18S rRNA. Moreover, at a position occupied by 3-methyluridine in E. coli 16S rRNA, the same (or a very similar) modified nucleoside is present in wheat mitochondrial 18S rRNA but not in wheat cytosol 18S rRNA. Further, E. coli 16S and 23S rRNAs hybridize extensively to wheat mitochondrial 18S and 26S rRNA genes, respectively, but wheat cytosol 18S and 26S rRNAs do not. No other mitochondrial system studies to date has provided comparable evidence that a mitochondrial rRNA is more closely related to its eubacterial homolog than is its counterpart in the cytoplasmic compartment of the same cell. The results reported here provide additional support for the view that plant mitochondria are of endosymbiotic, specifically eubacterial, origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号