首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkaline Comet assay is becoming a useful tool for early genotoxicity testing of new pharmaceutical drug candidates. The aim of this study was to elucidate the predictive value of Comet assay results for the outcome of the chromosome aberration (CA) test. For this purpose, a validation exercise with 13 drug candidates was carried out utilizing V79 Chinese hamster cells and human lymphocytes. The study demonstrates that results of the Comet assay and the chromosome aberration test show a high degree of agreement, irrespective of the cell type used. In the Comet assay, seven compounds were positive and six were negative, while in the CA test, six were positive and seven were negative. The only discrepancy was found with one compound that was positive in the Comet assay with V79 cells, negative in the Comet assay with human lymphocytes and clearly negative in the CA test with human lymphocytes. For the selection of concentrations for testing in the Comet assay, cytotoxicity by means of cell count after incubation or viability by means of Trypan-blue dye exclusion (TBDE) were used. The results show that either parameter led to analysis of a concentration range in the Comet assay similar to that chosen in the CA test, in which cell count (when using V79 cells) or mitotic index (in case of lymphocytes) were used. However, since cell count after incubation of cells is much more labour-intensive, viability was preferred as the parameter to assess cytotoxicity and for selecting concentrations for analysis in the Comet assay. The data presented in this study may contribute the regulatory acceptance of the Comet assay, e.g. for mechanistic studies.  相似文献   

2.
The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS).  相似文献   

3.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. Studies have shown its antioxidant, hepatoprotective, neuroprotective, anti-inflammatory, and antinociceptive effects. We recently showed the antioxidant effect of DPDS in V79 cells, and established the beneficial and toxic doses of this compound in this cell line. Here, we report the antigenotoxic and antimutagenic properties of DPDS, investigated by using a permanent lung fibroblast cell line derived from Chinese hamsters. We determined the cytotoxicity by clonal survival assay, and evaluated DNA damage in response to several mutagens by comet assay and micronucleus test in binucleated cells. In the clonal survival assay, at concentrations ranging from 1.62 to 12.5microM, DPDS was not cytotoxic, while at concentrations up to 25microM, it significantly decreased survival. The treatment with this organoselenium compound at non-cytotoxic dose range increased cell survival after challenge with hydrogen peroxide, methyl-methanesulphonate, and UVC radiation, but did not protect against 8-methoxypsoralen plus UVA-induced cytotoxicity. In addition, the treatment prevented induced DNA damage, as verified in the comet assay. The mutagenic effect of these genotoxins, as measured by the micronucleus test, similarly attenuated or prevented cytotoxicity and DNA damage. Treatment with DPDS also decreased lipid peroxidation levels after exposure to hydrogen peroxide MMS, and UVC radiation, and increased glutathione peroxidase activity in the extracts. Our results clearly demonstrate that DPDS at low concentrations presents antimutagenic properties, which are most probably due to its antioxidant properties.  相似文献   

4.
Lee M  Kwon J  Chung MK 《Mutation research》2003,541(1-2):9-19
The comet assay has been recently validated as a sensitive and specific test system for the quantification of DNA damage. The objectives of this study are to investigate the utility of comet assay for detecting mutagens with 11 substances that demonstrated positive results in at least one test among four standard short-term genotoxicity tests, and to evaluate its ability to predict rodent carcinogenicity. Out of 11 test substances, positive comet results were obtained for colchicine, hydroxyurea and actinomycin D. No effect on DNA migration, determined as the tail moment, was found with theophylline or 2,4-dinitrophenol. Bisphenol A, vinblastine, paclitaxel and p-anisidine appeared cytotoxic clastogens because these induced tail moment at concentrations showing 60% or less cell survival. In addition, among three test substances showing the bimodal distribution of DNA damage, which is a characteristic of apoptosis, true apoptosis result was obtained for camptothecin and dexamethasone with the Annexin V affinity assay. With this limited data-set, an investigation into the predictive value of these short-term genotoxicity tests for determining the carcinogenicity showed that comet assay has relatively high sensitivity and superior specificity to other four short-term genotoxicity assay. Therefore, our data suggest that comet assay, especially in combination with apoptotic assay, would be a good predictive test to minimize false-positives in evaluation of the potential rodent carcinogenicity.  相似文献   

5.
Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Using the comet assay, the micronucleus test and the chromosome aberration test with human fibroblasts (ES1 cells), the EU-funded "REFLEX" project (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) reported clearly positive effects for various exposure conditions. Because of the ongoing discussion on the biological significance of the effects observed, it was the aim of the present study to independently repeat the results using the same cells, the same equipment and the same exposure conditions. We therefore exposed ES1 cells to RF-EMF (1800 MHz; SAR 2 W/kg, continuous wave with intermittent exposure) for different time periods and then performed the alkaline (pH>13) comet assay and the micronucleus test (MNT). For both tests, clearly negative results were obtained in independently repeated experiments. We also performed these experiments with V79 cells, a sensitive Chinese hamster cell line that is frequently used in genotoxicity testing, and also did not measure any genotoxic effect in the comet assay and the MNT. Appropriate measures of quality control were considered to exclude variations in the test performance, failure of the RF-EMF exposure or an evaluation bias. The reasons for the difference between the results reported by the REFLEX project and our experiments remain unclear.  相似文献   

6.
Analysis of chromate-induced DNA-protein crosslinks with the comet assay   总被引:11,自引:0,他引:11  
Merk O  Reiser K  Speit G 《Mutation research》2000,471(1-2):71-80
Modifications of the comet assay have been introduced to measure crosslinks by determining the reduction of induced DNA migration. Our previous results indicated that the modified protocol of the alkaline comet assay is a sensitive tool for the detection of formaldehyde-induced DNA-protein crosslinks. But results for mitomycin C and cisplatin suggested that the modified protocol is not well suited for the evaluation of DNA-DNA crosslinkers. We now used the comet assay to investigate in V79 cells the effect of potassium chromate (K(2)CrO(4)), another DNA-protein crosslinker, to see whether the results obtained for formaldehyde can be generalized. However, chromate did not reduce spontaneous or radiation-induced DNA migration in the alkaline (pH 13) comet assay but led to a small but significant induction of DNA migration. A crosslinking effect of chromate could also not be detected with the alkaline comet assay after postincubation of cells in normal medium after chromate treatment to enable repair of other (migration-inducing) lesions that might mask the crosslinking effect. Exposure of slides to proteinase K further increased DNA migration of chromate-treated cells, thus indicating the presence of DNA-protein crosslinks. In contrast to the alkaline comet assay, a "neutral" version at pH 9 was suited to demonstrate reduced induction of DNA migration after gamma-irradiation of chromate-treated cells. The crosslinking effect was seen immediately at the end of the chromate treatment as well as after a 3h postincubation period. Using the "neutral" protocol in combination with proteinase K, we were able to demonstrate the presence of DNA-protein crosslinks as the probable cause for the migration-reducing effect. Further investigations will have to show whether this protocol can be recommended as a universal approach for the detection of DNA-protein crosslinks and also of DNA-DNA crosslinks with the comet assay.  相似文献   

7.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

8.
Speit G  Schütz P 《Mutation research》2008,655(1-2):22-27
The DNA-replication inhibitors aphidicolin (APC) and hydroxyurea (HU) were tested for their ability to induce effects on DNA in the in vitro alkaline comet assay with V79 cells. APC concentrations up to 15 microM and HU concentrations up to 500 microM did not significantly increase the extent of DNA migration after treatment during 4h. Treatment for 18 h, however, led to inconsistently significant increase in DNA migration. These increases in DNA migration were accompanied by severe cell-cycle disturbances, cytotoxic effects (reduced population doubling and reduced mitotic index) and increased frequencies of cells with chromosome aberrations. The results indicate that substances with such secondary effects on DNA (in contrast to agents that directly damage DNA) only induce effects in the comet assay after prolonged exposure, together with cytotoxic effects. We conclude that slight inhibition of DNA replication and cell-cycle delay per se do not cause significant effects in the in vitro comet assay under standard test conditions. Furthermore, the in vitro comet assay seems to be less sensitive towards this type of secondary DNA effects than the in vitro chromosome aberration test.  相似文献   

9.
Three structurally related phenyltetrahydropyridinyl butylazole (PTHPB)-derived drug candidates with sigma receptor-binding properties were evaluated for genotoxic potential in the ICH standard battery of genetic toxicology assays. These comprised an Ames test, a mouse-lymphoma assay, and a mouse bone-marrow micronucleus test. The maximum test concentrations in the in vitro assays were determined by the solubility and/or the cytotoxicity of the compounds. In the mouse micronucleus assay, the compounds were administered orally at three levels up to the maximum tolerated dose (MTD). Negative results were obtained for all three drug candidates in the Ames test and in the mouse-lymphoma assay, both in the absence or presence of metabolic activation. In the mouse micronucleus test, there was no effect on the frequency of micronucleated polychromatic erythrocytes (MNPCE) in bone marrow after oral administration of any of the three test compounds, at any dose level or sampling time (24 and 48h). Administration of all three compounds at the MTD induced a clear decrease in mouse body-temperature of 3.1-4.8 degrees C below normal; the temperature returned to normal within 8h of dose administration. The produced mild hypothermia and absence of micronucleus induction was in contrast to the induction of MNPCE secondary to marked hypothermia reported for a structurally similar PTHPB-derived sigma-receptor ligand, the antipsychotic compound E-5842. The results obtained in the current series of studies suggest that exposure to the three tested PTHPB-derived drug candidates would not pose a genotoxic risk under clinical conditions.  相似文献   

10.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   

11.
Microbial volatile organic compounds (MVOC), metabolites of fungi detected in indoor moulds and in working places in compost facilities are considered as a potential health hazard. Their toxicological relevance, however, is largely unknown and data are rare. The aim of this study was to evaluate in vitro the genotoxic, clastogenic and mutagenic potential of same typical MVOC. For the study of DNA damage human lung carcinoma epithelial A549 cells, V79 Chinese hamster fibroblasts and human peripheral blood cells were exposed and subjected to the alkaline comet assay (single cell gel test). Taking the Chinese hamster V79 cell line as a target clastogenic effects were studied by the micronucleus test and mutagenic effects by the hypoxanthine-guanine-phosphoribosyl transferase gene mutation test (HPRT test). The cytogenic effects of MVOC were assessed by a clonogenic assay using the A549 cell line. The alkylating agent methyl methanesulfonate (MMS) was taken as a positive control. The results indicate that MVOC induced DNA damage is only seen in conditions in which also cytotoxic effects are observed. Clastogenic and mutagenic effects could not be detected.  相似文献   

12.
Microbial volatile organic compounds (MVOC), metabolites of fungi detected in indoor moulds and in working places in compost facilities are considered as a potential health hazard. Their toxicological relevance, however, is largely unknown and data are rare. The aim of this study was to evaluate in vitro the genotoxic, clastogenic and mutagenic potential of same typical MVOC. For the study of DNA damage human lung carcinoma epithelial A549 cells, V79 Chinese hamster fibroblasts and human peripheral blood cells were exposed and subjected to the alkaline comet assay (single cell gel test). Taking the Chinese hamster V79 cell line as a target clastogenic effects were studied by the micronucleus test and mutagenic effects by the hypoxanthine-guanine-phosphoribosyl transferase gene mutation test (HPRT test). The cytogenic effects of MVOC were assessed by a clonogenic assay using the A549 cell line. The alkylating agent methyl methanesulfonate (MMS) was taken as a positive control. The results indicate that MVOC induced DNA damage is only seen in conditions in which also cytotoxic effects are observed. Clastogenic and mutagenic effects could not be detected.  相似文献   

13.
The new dipalladium complex [Pd(2)(mu-mtpo-N(3),N(4))(2)(phen)(2)](NO(3))(2) (where phen=1,10-phenantroline; Hmtpo=5,7-dihydro-7-oxo-5-methyl[1,2,4]triazolopyrimidine), (Pd(2)-Hmtpo, or complex I), interacts effectively with DNA plasmid (pBS), as studied by circular dichroism spectroscopy (CD), causing large helix distortions, altering the direction of the main DNA helix axis and producing unwinding of the DNA double helix. DNA damage induced by complex I was highly significant at 2.81 microM (ovarian carcinoma TG cell line), as assessed by comet assay, a dose at which all treated nuclei showed more than 30% DNA migration to the comet tail. DNA damage effect is a consequence of genotoxicity and not a false positive response caused by cytotoxicity. In vitro cytotoxic assay on the two human tumor cell lines TG and BT-20 (breast carcinoma), shows that doses of 0.47, 1.41 and 2.81 microM produce significant antiproliferative effects after 4 days of treatment compared with control. Complex I was highly cytotoxic at 2.81 microM causing an inhibition of viable cells of 65.5%. Cisplatin (cis-DDP) exhibits lower cytotoxic activity in TG cells than dipalladium complex (a cisplatin dose of 6.67 microM inhibits 30.3%) and does not cause migration of DNA to comet tail.  相似文献   

14.
Hoffmann H  Speit G 《Mutation research》2005,581(1-2):105-114
The comet assay (single-cell gel electrophoresis, SCG) is being increasingly used in human biomonitoring for the detection of genotoxic exposures. Cigarette smoking is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds. Therefore, smoking should represent a relevant mutagenic exposure and lead to genotoxic effects in exposed cells. However, our previous investigations as well as several other published studies on human biomonitoring failed to show an effect of smoking on DNA migration in the comet assay, while some other studies did indicate such an effect. Although many factors can contribute to the generation of discrepant results in such studies, clear effects should be obtained after high exposure. We therefore performed a comparative study with healthy male heavy smokers (>20 cigarettes per day) and non-smokers (n=12 in each group). We measured the baseline comet assay effects in fresh whole blood samples and isolated lymphocytes. In addition, the amount of 'formamidopyrimidine DNA-glycosylase (FPG)-sensitive sites' was determined by a combination of the standard comet assay with the bacterial FPG protein. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline DNA damage was comparatively analysed. Duplicate slides from each sample were processed and analysed separately. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. Finally, to compare the comet assay results with another genetic endpoint, all blood samples were investigated in parallel by the micronucleus test (MNT). Baseline and gamma radiation-induced micronucleus frequencies were determined. None of these approaches revealed a significant difference between heavy smokers and non-smokers with regard to a genotoxic effect in peripheral blood cells.  相似文献   

15.
The number of biomaterials used in biomedical applications has rapidly increased in the past two decades. Fluorapatite (FA) is one of the inorganic constituents of bone or teeth used for hard-tissue repairs and replacements. Fluor-hydroxyapatite (FHA) is a new synthetically prepared composite that in its structure contains the same molecular concentration of OH(-) groups and F(-) ions. The aim of this experimental investigation was to evaluate cytotoxic, genotoxic and mutagenic effects of FHA and FA eluates on Chinese hamster V79 cells and to compare them with the effects of hydroxyapatite (HA) eluate. Cytotoxicity of the biomaterials tested was evaluated by use of the cell colony-formation assay and by direct counting of the cells in each colony. Genotoxicity was assessed by single-cell gel electrophoresis (comet assay) and mutagenicity was evaluated by the Hprt gene-mutation assay and in bacterial mutagenicity tests using Salmonella typhimurium TA100. The results show that the highest test concentrations of the biomaterials (100% and 75% eluates) induced very weak inhibition of colony growth (about 10%). On the other hand, the reduction of cell number per colony induced by these concentrations was in the range from 43% to 31%. The comet assay showed that biomaterials induced DNA breaks, which increased with increasing test concentrations in the order HA相似文献   

16.
Non-covalent drug/DNA interactions are difficult to study and because of this, the significance of such interactions from a safety standpoint and their contribution to positive genetic toxicology test findings is poorly understood. It is shown in the present study that such interactions may be detected and quantified in Chinese hamster V79 cells by an adaptation of the bleomycin amplification assay. This assay measures the ability of a test compound to enhance the DNA damaging activity of the antibiotic bleomycin using micronucleus formation as an endpoint. Results are presented examining the bleomycin amplification activity of known intercalating agents, groove-binding agents and other structurally diverse classes of compounds for which intercalative status has not been reported. The assay reveals a strong and predictable SAR for amplification activity based on number and orientation of aromatic rings. Moreover, excellent correlations are observed between DNA binding (viscometric analyses) and DNA amplification in V79 cells for a series of seven experimental compounds. The assay is shown to be useful in understanding the genotoxicity of marketed antihistamines and to help explain genetic toxicology findings observed in a series of novel pharmaceutical entities. It is proposed that assessment of bleomycin amplification activity of novel compounds in early genotoxicity prescreening may provide important information upon which to base synthesis of compounds with minimal or no genotoxic liability.  相似文献   

17.
Different variants of the comet assay were used to study the genotoxic and cytotoxic properties of the following eight compounds: chloral hydrate, colchicine, hydroquinone, DL-menthol, mitomycin C, sodium iodoacetate, thimerosal and valinomycin. Colchicine, mitomycin C, sodium iodoacetate and thimerosal induced genotoxic effects. The other compounds were found to be inactive. The compounds were tested in the standard comet assay as well as in the all cell comet assay (recovery of floating cells after treatment), designed in our laboratory for adherently-growing cells. This latter procedure proved to be more adequate for the assessment of the cytotoxicity for some of the compounds tested (hydroquinone, DL-menthol, thimerosal, valinomycin). Colchicine was positive in the standard comet assay (3h treatment) and in the all cell comet assay (24h treatment). Sodium iodoacetate and thimerosal were positive in the standard and/or the all cell comet assay. Chloral hydrate, hydroquinone, sodium iodoacetate, mitomycin C and thimerosal were also tested in the modified comet assay using lysed cells. Mitomycin C and thimerosal showed effects in this assay, whereas sodium iodoacetate was inactive. This indicates that it does not induce direct DNA damage. Compounds that are known or suspected to form DNA-DNA cross-links or DNA-protein cross-links (chloral hydrate, hydroquinone, mitomycin C and thimerosal) were checked for their ability to reduce ethyl methanesulfonate (EMS)-induced DNA damage. This mode of action could be demonstrated for mitomycin C only.  相似文献   

18.
tert.-Butylhydroquinone (TBHQ) has been reported to be genotoxic in some short-term assays but non-genotoxic in others. We have examined cytotoxicity and genotoxicity of TBHQ, a principal metabolite of the phenolic antioxidant 2(3)-tert.-butyl-4-hydroxyanisole (BHA), in an hepatocyte-mediated assay with V79 Chinese hamster lung cells including both sister-chromatid exchange (SCE) and thioguanine-resistance (TGR) endpoints. The ability of BHA and of TBHQ to elicit a genotoxic response in Saccharomyces cerevisiae strain D7 was also investigated. In V79 cytotoxicity tests, TBHQ without hepatocytes produced a 50% reduction in colony formation at 4.2 micrograms/ml and was lethal to 100% of the cells at concentrations above 5 micrograms/ml. At partially cytotoxic dose levels, (0.17-3.4 micrograms/ml of medium), TBHQ sometimes increased significantly the frequency of SCE. TBHQ also produced sporadic statistically significant increases in the mutation frequency at the HGPRTase (TGR) gene locus when tested alone or with activation by rat or hamster hepatocytes. Mitotic gene conversion and reverse mutation were not induced in strain D7 of Saccharomyces cerevisiae by exposure to BHA or to TBHQ for 4 h at concentrations as high as 200 micrograms/ml for BHA or 500 micrograms/ml for TBHQ, either alone or with activation by rat-liver S9. Incubation of the yeast cells with BHA or TBHQ for 24 h in growth medium without activation also did not induce genotoxic activity. The slight and sporadic response to TBHQ in the V79 test system may indicate weak genotoxicity which is sensitive to slight differences in test conditions. The classification and test strategies adopted for compounds such as TBHQ could have important implications for regulatory decisions and for the validation of short-term tests.  相似文献   

19.
Mutagenicity and genotoxicity of isatin in mammalian cells in vivo   总被引:1,自引:0,他引:1  
Isatin (1H-indole-2,3-dione) is a synthetically versatile substrate used for the synthesis of heterocyclic compounds and as a raw material for drug synthesis. Isatin and its derivatives demonstrate anticonvulsant, antibacterial, antifungal, antiviral, and anticancer properties. We evaluated the genotoxic and mutagenic effects of acute (24h) and repeated (14d) exposure to isatin in vivo, using the comet assay and the micronucleus test. Three doses (50, 100, and 150mg/kgb.w.) were administered to mice via gavage. Doses were selected according to the LD(50) of isatin, estimated in a preliminary test to be 1g/kgb.w. To evaluate the results, parametric (ANOVA/Tukey) and non-parametric (Kruskal-Wallis/Dunn's post hoc test) tests were used, according to the nature of the data distribution. At all doses (50, 100 and 150mg/kgb.w.), after acute treatment with isatin, alterations in DNA migration (comet assay) were not observed and mutagenic effects were not seen (micronucleus test on peripheral blood cells). After repeated doses, only the highest dose of isatin (150mg/kgb.w.) induced alterations in the DNA that gave rise to micronuclei in the bone marrow and peripheral blood cells of the mice. Our results show that the mutagenic and genotoxic effects of isatin depend on dose and on period of exposure.  相似文献   

20.
Agaricus blazei Murrill, a native mushroom in Brazil, has been widely consumed in different parts of the world due to its medicinal power. Its anticarcinogenic activity has been shown in experimental animals, and antimutagenic activity has been demonstrated only in Salmonella. In this work, the mutagenic and antimutagenic activities of mushroom teas of strains AB96/07, AB96/09 and AB97/11 were evaluated in Chinese hamster V79 cells, using the comet assay and the micronucleus test. The cells were treated with three different concentrations (0.05, 0.1 and 0.15) of teas prepared from a 2.5% aqueous solution, under three different temperatures: (1) room (20-25 degrees C); (2) ice-cold (2-8 degrees C); and (3) warm (60 degrees C). The teas were applied in co-, pre- and post-treatments in combination with the mutagen methyl methanesulfonate (MMS; 1.6x10(-4) and 4x10(-4)M). The duration of the treatment was 1h in the comet assay and 2h in the micronucleus test. The results showed that the mushroom was not mutagenic itself. Nevertheless, the mushroom is an efficient antimutagen against the induction of micronuclei by MMS in all concentrations and preparations tested. The observed reductions in the frequencies of micronuclei ranged from 61.5 (room temperature 0.1% tea in post-treatment) to 110.3% (co-treatment with warm and ice-cold 0.15% tea). In the comet assay, the antimutagenic activity was detected only when the cells were pre-treated with the following teas: warm 0.1 and 0.15%, room temperature 0.05% and ice-cold 0.1%. The results indicate that the mushroom A. blazei extracts are antimutagenic when tested in V79 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号