首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The cytochrome d terminal oxidase complex is one of two terminal oxidases which are components of the aerobic respiratory chain of Escherichia coli. This membrane-bound enzyme catalyzes the two-electron oxidation of ubiquinol and the four-electron reduction of oxygen to water. Enzyme turnover generates proton and voltage gradients across the bilayer. The oxidase is a heterodimer containing 2 mol of protoheme IX and 1 or 2 mol of heme d per mol of complex. To explain the functional properties of the enzyme, a simple model has been proposed in which it is speculated that the heme prosthetic groups define two separate active sites on opposite sides of the membrane at which the oxidation of quinol and the reduction of water, respectively, are catalyzed. This paper represents an initial effort to define the axial ligands of each of the three or four hemes within the amino acid sequence of the oxidase subunits. Each of the 10 histidine residues has been altered by site-directed mutagenesis with the expectation that histidine residues are likely candidates for heme ligands. Eight of the 10 histidine residues are not essential for enzyme activity, and 2 appear to function as heme axial ligands. Histidine 186 in subunit I is required for the cytochrome b558 component of the enzyme. This residue is likely to be located near the periplasmic surface of the membrane. Histidine 19, near the amino terminus of subunit I also appears to be a heme ligand. It is concluded that two of the four or five expected heme axial ligands have been tentatively identified, although further work is required to confirm these conclusions. A minimum of two additional axial ligands must be residues other than histidine.  相似文献   

3.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

4.
The cytochrome d complex is a component of the aerobic respiratory system of Escherichia coli. The enzyme functions as a terminal oxidase, oxidizing ubiquinol-8 within the cytoplasmic membrane and reducing oxygen to water. The enzyme is of particular interest because it is a coupling site in the electron transfer chain. The electron transfer reaction catalyzed by this enzyme is coupled to the translocations of protons across the membrane (H+/e-approximately equal to 1). The oxidase contains two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, with molecular weights of 58,000 and 43,000. In this paper, the question of the quaternary structure is addressed. Quantitative N-terminal analysis of the isolated enzyme and relative mass quantitation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate the subunits are present in equimolar amounts. Sedimentation velocity and sedimentation equilibrium studies were used to characterize the hydrodynamic properties of the purified enzyme solubilized in Triton X-100, under conditions where the enzyme is active. It is concluded that the active enzyme in Triton X-100 is a heterodimer, containing one copy of each subunit. This is likely the structure of the enzyme in the E. coli membrane.  相似文献   

5.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

6.
7.
The cytochrome d terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water along with the concomitant generation of a proton-motive force across the membrane. Previous studies have established that the oxidase is composed of one copy of each of two subunits (I and II), and contains four heme prosthetic groups. The hydropathy profiles of the amino acid sequences suggest that each subunit has multiple transmembrane-spanning helical segments. The goal of the current work is to obtain experimental information about which portions of the two polypeptide chains are facing the cytoplasm. This is part of an effort to determine the topological folding of the two subunits across the membrane. A number of random gene fusions were generated in vitro which encode hybrid proteins in which the amino-terminal portion is provided by one of the two subunits of the oxidase, and the carboxyl-terminal portion is beta-galactosidase. Studies from other systems have indicated that the only hybrid proteins which will manifest high beta-galactosidase specific activity and be membrane-bound will be those where the fusion junction is in a region of the cytochrome polypeptides facing the cytoplasm. Fusions were obtained in eight positions within subunit I and 11 positions within subunit II. These identified four cytoplasmic-facing regions within subunit II, consistent with its hydropathy profile showing eight transmembrane helices. The data with subunit I are less conclusive.  相似文献   

8.
The cytochrome o complex of the Escherichia coli aerobic respiratory chain is a ubiquinol oxidase. The enzyme consists of at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and contains two heme b prosthetic groups (b555 and b562) plus copper. The sequence of the cyo operon, encoding the subunits of the oxidase, reveals five open reading frames, cyoABCDE. This paper describes results obtained by expressing independently cyoA and cyoB in the absence of the other subunits of the complex. Polyclonal antibodies which react with subunits I and II of the purified oxidase demonstrate that cyoA and cyoB correspond to subunit II and subunit I, respectively, of the complex. These subunits are stably inserted into the membrane when expressed. Furthermore, expression of cyoB (subunit I) results in elevated heme levels in the membrane. Reduced-minus-oxidized spectra suggest that the cytochrome b555 component is present but that the cytochrome b562 component is not. This heme component is shown to bind to CO, as it does in the intact enzyme. Hence, subunit I alone is sufficient for the assembly of the stable CO-binding heme component of this oxidase.  相似文献   

9.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases which are differentially regulated. The cytochrome o complex predominates under growth conditions of high aeration, whereas the cytochrome d complex predominates when the oxygen tension is low. Either terminal oxidase will support aerobic growth. The goal of the work presented in this paper was to identify genes required for the expression of the functional form of the cytochrome d complex, other than the genes encoding the polypeptide components of the oxidase complex (cyd locus). A strain lacking the cytochrome o complex (cyo mutant strain) was mutagenized by using a lambda-Mu hybrid hopper bacteriophage, lambda placMu53, which inserts randomly into the chromosome and carries a kanamycin resistance marker. Strains were isolated and examined which were unable to grow aerobically, i.e., which lacked functional cytochrome d complex, and which could not be complemented by introduction of the cyd gene on F-prime episomes. One strain was selected for characterization. The phage insert was mapped to min 18.9 on the genetic linkage map, defining a new genetic locus, cydC. Evidence described in the text suggests that the gene product is probably required for the synthesis of the unique heme d component of the cytochrome d complex.  相似文献   

10.
The cytochrome o terminal oxidase complex is a component of the aerobic respiratory chain of Escherichia coli. This enzyme catalyzes the oxidation of ubiquinol-8 to ubiquinone-8 within the cytoplasmic membrane and the concomitant reduction of O2 to H2O. The hydropathy profiles of the deduced amino acid sequences suggest that all five of the gene products of the cyo operon contain multiple membrane-spanning helical segments. The goal of this work was to obtain experimental evidence for the topology of the five gene products in the cytoplasmic membrane by using the technique of gene fusions. A number of random gene fusions were generated in vitro encoding hybrid proteins in which the amino-terminal portion was provided by the subunit of interest and the carboxyl-terminal portion by one of two sensor proteins, alkaline phosphatase lacking its signal sequence or beta-galactosidase. Results obtained are self-consistent, and topological models are proposed for all of the five gene products encoded by the cyo operon. Based on the sequence similarities with subunits of the aa3-type cytochrome c oxidases, the experimental evidence obtained here can be used to infer topological models for the mitochondrial encoded subunits of the eukaryotic cytochrome c oxidases.  相似文献   

11.
The cytochrome d terminal oxidase complex is one of two terminal oxidases in the aerobic respiratory chain of Escherichia coli. Previous work has shown by dodecyl sulfate-polyacrylamide gel electrophoresis that this enzyme contains two subunits (I and II) and three cytochrome components, b558 , a1, and d. Reconstitution studies have demonstrated that the enzyme functions as a ubiquinol-8 oxidase and catalyzes an electrogenic reaction, i.e. turnover is accompanied by a charge separation across the membrane bilayer. In this paper, monoclonal and polyclonal antibodies were used to obtain structural information about the cytochrome d complex. It is shown that antibodies directed against subunit I effectively inhibit ubiquinol-1 oxidation by the purified enzyme in detergent, whereas antibodies which bind to subunit II have no effect on quinol oxidation. The oxidation rate of N,N,N',N'-tetramethyl-p-phenylenediamine, in contrast, is unaffected by antisubunit I antibodies, but is inhibited by antibodies against subunit II. It is concluded that the quinol oxidation site is on subunit I, previously shown to be the cytochrome b558 component of the complex, and that N,N,N',N'-tetramethyl-p-phenylenediamine oxidation occurs at a secondary site on subunit II. The antibodies were also used to analyze the results of a protein cross-linking experiment. Dimethyl suberimidate was used to cross-link the subunits of purified, solubilized oxidase. Immunoblot analysis of the products of this cross-linking clearly indicate that subunit II probably exists as a dimer within the complex. Finally, it is shown that the purified enzyme contains tightly bound lipopolysaccharide. This was revealed after discovering that one of the monoclonal antibodies raised against the purified complex is actually directed against lipopolysaccharide. The significance of this finding is not known.  相似文献   

12.
The cytochrome o complex is the predominant terminal oxidase in the aerobic respiratory chain of Escherichia coli when the bacteria are grown under conditions of high aeration. The oxidase is a ubiquinol oxidase and reduces molecular oxygen to water. Electron transport through the enzyme is coupled to the generation of a protonmotive force. The purified cytochrome o complex contains four or five subunits, two protoheme IX (heme b) prosthetic groups, plus at least one Cu. The subunits are all encoded by the cyo operon. Sequence comparisons show that the cytochrome o complex is closely related to the aa3-type cytochrome c oxidase family. Gene fusions have been used to define the topology of each of the gene products. Subunits I, II, III and IV are proposed to have 15, 2, 5 and 3 transmembrane spans, respectively. The fifth gene product (cyoE) encodes a protein with 7 membrane spanning segments, and this may also be a subunit of this enzyme. Fourier transform infrared spectroscopy has been used to monitor CO bound in the active site where oxygen is reduced. These data provide definitive proof that the cytochrome o complex has a heme-copper binuclear center, similar to that present in the aa3-type cytochrome c oxidases. Site-directed mutagenesis is being utilized to define which amino acids are ligands to the heme iron and copper prosthetic groups.  相似文献   

13.
14.
The cytochrome d complex of Escherichia coli is a heterodimer located in the bacterial cytoplasmic membrane, where it functions as a terminal oxidase of the aerobic respiratory chain. The topology of each of the two subunits of the cytochrome d complex was analysed by the genetic method involving alkaline phosphatase gene fusions. These fusions were generated by both an in vivo method using the transposon TnphoA and an in vitro method of construction. A total of 48 unique fusions were isolated and the whole-cell alkaline phosphatase-specific activities were determined. Data from these fusions, in combination with information from other studies, provide the basis for two-dimensional models for each of the two subunits, defining the way in which the subunits fold in the inner membrane of E. coli.  相似文献   

15.
Preparations and protein chemical characterizations performed with cytochromec oxidase (E.C. 1.9.3.1) from the purple bacteriumParacoccus denitrificans are reviewed. The simplest catalytically competent complex of the enzyme consists of two subunits of 62012 and 27999 Da. The theoretical hemea/protein ratio of the purified enzyme is 22.0 nmol/mg. The amino acid sequences of both proteins are compared with examples of subunits I and II of mitochondrial terminal oxidases from the main kingdoms of eukaryotes. The significance of the emerging conserved features such as membrane penetration patterns, invariant residues, stoichiometry, and sites of prosthetic groups are discussed. TheParacoccus enzyme represents the only prokaryotic oxidase detailed so far, which is directly related to the mitochondrial oxidases by common ancestry in the growing O2 atmosphere.  相似文献   

16.
17.
From the membrane fraction of the Gram-positive bacterium Carboxydothermus hydrogenoformans, an enzyme complex catalyzing the conversion of CO to CO2 and H2 was purified. The enzyme complex showed maximal CO-oxidizing:H2-evolving enzyme activity with 5% CO in the headspace (450 U per mg protein). Higher CO concentrations inhibited the hydrogenase present in the enzyme complex. For maximal activity, the enzyme complex had to be activated by either CO or strong reductants. The enzyme complex also catalyzed the CO- or H2-dependent reduction of methylviologen at 5900 and 180 U per mg protein, respectively. The complex was found to be composed of six hydrophilic and two hydrophobic polypeptides. The amino-terminal sequences of the six hydrophilic subunits were determined allowing the identification of the encoding genes in the preliminary genome sequence of C. hydrogenoformans. From the sequence analysis it was deduced that the enzyme complex is formed by a Ni-containing carbon monoxide dehydrogenase (CooS), an electron transfer protein containing four [4Fe-4S] clusters (CooF) and a membrane bound [NiFe] hydrogenase composed of four hydrophilic subunits and two membrane integral subunits. The hydrogenase part of the complex shows high sequence similarity to members of a small group of [NiFe] hydrogenases with sequence similarity to energy conserving NADH:quinone oxidoreductases. The data support a model in which the enzyme complex is composed of two catalytic sites, a CO-oxidizing site and a H2-forming site, which are connected via a different iron-sulfur cluster containing electron transfer subunits. The exergonic redox reaction catalyzed by the enzyme complex in vivo has to be coupled to energy conservation, most likely via the generation of a proton motive force.  相似文献   

18.
Respiratory complex I (NADH:ubiquinone oxidoreductase) is an L-shaped multisubunit protein assembly consisting of a hydrophobic membrane arm and a hydrophilic peripheral arm. It catalyses the transfer of two electrons from NADH to quinone coupled to the translocation of four protons across the membrane. Although we have solved recently the crystal structure of the peripheral arm, the structure of the complete enzyme and the coupling mechanism are not yet known. The membrane domain of Escherichia coli complex I consists of seven different subunits with total molecular mass of 258 kDa. It is significantly more stable than the whole enzyme, which allowed us to obtain well-ordered two-dimensional crystals of the domain, belonging to the space group p22(1)2(1). Comparison of the projection map of negatively stained crystals with previously published low-resolution structures indicated that the characteristic curved shape of the membrane domain is remarkably well conserved between bacterial and mitochondrial enzymes, helping us to interpret projection maps in the context of the intact complex. Two pronounced stain-excluding densities at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution. About 60 transmembrane alpha-helices, both perpendicular to the membrane plane and tilted, are present within one membrane domain, which is consistent with secondary structure predictions. A possible binding site and access channel for quinone are found at the interface with the peripheral arm. Tentative assignment of individual subunits to the features of the map has been made. The location of subunits NuoL and NuoM at substantial distance from the peripheral arm, which contains all the redox centres of the complex, indicates that conformational changes are likely to play a role in the mechanism of coupling between electron transfer and proton pumping.  相似文献   

19.
Cytochrome d terminal oxidase mutants were isolated by using hydroxylamine mutagenesis of pNG2, a pBR322-derived plasmid containing the wild-type cyd operon. The mutagenized plasmid was transformed into a cyo cyd recA strain, and the transformants were screened for the inability to confer aerobic growth on nonfermentable carbon sources. Western blot analysis and visible-light spectroscopy were performed to characterize three independent mutants grown both aerobically and anaerobically. The mutational variants of the cytochrome d complex were stabilized under anaerobic growth conditions. All three mutations perturb the b595 and d heme components of the complex. These mutations were mapped and sequenced and are shown to be located in the N-terminal third of subunit II of the cytochrome d complex. It is proposed that the N terminus of subunit II may interact with subunit I to form an interface that binds the b595 and d heme centers.  相似文献   

20.
A respiration-deficient mutant of Escherichia coli has been isolated which is unable to grow aerobically on nonfermentable substrates such as succinate and lactate. Spectroscopic and immunological studies showed that this mutant lacks the cytochrome o terminal oxidase of the high aeration branch of the aerobic electron transport chain. This strain carries a mutation in a gene designated cyo which is cotransducible with the acrA locus. Mutations in cyo were obtained by mutagenizing a strain that was cyd and, thus, was lacking the cytochrome d terminal oxidase. Strain RG99, which carries both the cyd- and cyo- alleles, grows normally under anaerobic conditions in the presence of nitrate. Introduction of the cyd+ allele into the strain restores the respiration function of the strain, indicating that the cytochrome o branch of the respiratory chain is dispensable under normal laboratory growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号