首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
Isopropyl substituted 4-thioazolyl valine side chains are highly optimized P(2)-P(3) ligands for C2 symmetry-based HIV protease inhibitors, as exemplified by the drug ritonavir. Replacement of the side chain with the conformationally constrained hexahydrofurofuranyloxy P(2) ligand in combination with a dimethylphenoxyacetate on the other end of the ritonavir core diamine yielded highly potent HIV protease inhibitors. The in vitro antiviral activity in MT4 cells increased by 10- and 20-fold, respectively, in the absence and presence of 50% human serum compared to ritonavir. The structure-activity relationships of inhibitor series with this combination of ligands were investigated. Preliminary pharmacokinetic studies in rats indicated rapid elimination of the inhibitors from the blood, and the plasma levels were not significantly enhanced by coadministration with ritonavir. However, the novel structural features and the high intrinsic antiviral potency of this series provides potential for the future exploration of prodrug strategies.  相似文献   

5.
6.
Human immunodeficiency virus (HIV) protease is a well-established drug target in HIV chemotherapy. However, continuously increasing resistance towards approved drugs inevitably requires the development of new inhibitors preferably showing no susceptibility against resistant HIV protease strains. Recently, symmetric pyrrolidine-3,4-bis-N-benzyl-sulfonamides have been developed as a new class of HIV-1 protease inhibitors. The most promising candidate exhibited a Ki of 74 nM towards a wild-type protease. Herein, we report the influence of the active-site mutations Ile50Val and Ile84Val on these inhibitors by structural and kinetic analysis. Although the Ile50Val mutation leads to a significant decrease in affinity for all compounds in this series, they retain or even show increased affinity towards the important Ile84Val mutation. By detailed analysis of the crystal structures of two representatives in complex with wild-type and mutant proteases, we were able to elucidate the structural basis of this phenomenon.  相似文献   

7.
8.
Steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.  相似文献   

9.
The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a broad-specificity nuclear hormone receptor that is well known for its role in drug and xenobiotic metabolism. SXR is activated by a wide variety of endobiotics, dietary compounds, pharmaceuticals, and xenobiotic chemicals. SXR is expressed at its highest levels in the liver and intestine yet is found in lower levels in other tissues, where its roles are less understood. We previously demonstrated that SXR(-/-) mice demonstrate elevated nuclear factor (NF)-κB activity and overexpression of NF-κB target genes and that SXR(-/-) mice develop lymphoma derived from B-1 lymphocytes in an age-dependent manner. In this work, we show that fetal livers in SXR(-/-) mice display elevated expression of NF-κB target genes and possess a significantly larger percentage of B-1 progenitor cells in the fetal liver. Furthermore, in utero activation of SXR in wild-type mice reduces the B-1 progenitor populations in the embryonic liver and reduces the size of the B-1 cell compartment in adult animals that were treated in utero. This suggests that activation of SXR during development may permanently alter the immune system of animals exposed in utero, demonstrating a novel role for SXR in the generation of B-1 cell precursors in the fetal liver. These data support our previous findings that SXR functions as a tumor suppressor in B-1 lymphocytes and establish a unique role for SXR as a modulator of developmental hematopoiesis in the liver.  相似文献   

10.
The steroid and xenobiotic receptor (SXR) is a broad-specificity nuclear hormone receptor that is highly expressed in the liver and intestine, where its primary function is to regulate drug and xenobiotic metabolism. SXR is expressed at lower levels in other tissues, where little is known about its physiological functions. We previously linked SXR with immunity and inflammation by showing that SXR antagonizes the activity of nuclear factor (NF)-κB in vitro and in vivo. SXR(-/-) mice demonstrate aberrantly high NF-κB activity and overexpression of NF-κB target genes. Here we show that SXR(-/-) mice develop B cell lymphoma in an age-dependent manner. SXR(-/-) mice develop multiple hyperplastic lymphoid foci composed of B-1a cells in the intestine, spleen, lymph nodes, peritoneal cavity, and blood. In all circumstances, these lymphocytes possess cell surface and molecular characteristics of either chronic lymphocytic leukemia or non-Hodgkin's lymphoma originating from B-1 lymphocytes. These results demonstrate a novel and unsuspected role for SXR signaling in the B-1 cell compartment, establish SXR as a tumor suppressor in B-1 cells, and may provide a link between metabolism of xenobiotic compounds and lymphomagenesis.  相似文献   

11.
The mold of the substrate-binding region of the active site of monoamine oxidase A (MAO A) was designed using data of the enzyme interaction with reversible competitive inhibitors and the analysis of their three-dimensional structures. The superposition of ligands in biologically active conformations allowed determination of the shape and dimension of the active site cavity accommodating these compounds. The correctness of this approach was validated by the analysis of HIV protease interaction with its inhibitors using three-dimensional structures of HIV protease-inhibitor complexes. The mold of the substrate/inhibitor-binding site can be used for searching for new ligands in molecular databases and the development of a new generation of MAO inhibitors using lead structures that have not been employed for this purpose yet.  相似文献   

12.
Accidental discoveries always played an important role in science, especially in the search for new drugs. Several examples of serendipitous findings, leading to therapeutically useful drugs, are presented and discussed. Captopril, an antihypertensive Angiotensin-converting enzyme inhibitor, was the first drug that could be derived from a structural model of a protein. Dorzolamide, a Carboanhydrase inhibitor for the treatment of glaucoma, and the HIV protease inhibitors Saquinavir, Indinavir, Ritonavir, and Nelfinavir are further examples of therapeutically used drugs from structure-based design. More enzyme inhibitors, e.g. the anti-influenza drugs Zanamivir and GS 4104, are in clinical development. In the absence of a protein 3D structure, the 3D structures of certain ligands may be used for rational design. This approach is exemplified by the design of specifically acting integrin receptor antagonists. In the last years, combinatorial and computational approaches became important methods for rational drug design. SAR by NMR searches for low-affinity ligands that bind to proximal subsites of an enzyme; linkage with an appropriate tether produces nanomolar inhibitors. The de novo design program LUDI and the docking program FlexX are tools for the computer-aided design of protein ligands. Work is in progress to combine such approaches to strategies for combinatorial drug design.  相似文献   

13.
Dendritic cells are susceptible to human immunodeficiency virus (HIV) infection and may transmit the virus to T cells in vivo. Scarce information is available about drug efficacy in dendritic cells because preclinical testing of antiretroviral drugs has been limited predominantly to T cells and macrophages. We compared the antiviral activities of hydroxyurea and two protease inhibitors (indinavir and ritonavir) in monocyte-derived dendritic cells and in lymphocytes. At therapeutic concentrations (50 to 100 microM), hydroxyurea inhibited supernatant virus production from monocyte-derived dendritic cells in vitro but the drug was ineffective in activated lymphocytes. Concentrations of hydroxyurea insufficient to be effective in activated lymphocytes cultured alone strongly inhibited supernatant virus production from cocultures of uninfected, activated lymphocytes with previously infected monocyte-derived dendritic cells in vitro. In contrast, protease inhibitors were up to 30-fold less efficient in dendritic cells than in activated lymphocytes. Our data support the rationale for testing of the combination of hydroxyurea and protease inhibitors, since these drugs may have complementary antiviral efficacies in different cell compartments. A new criterion for combining drugs for the treatment of HIV infection could be to include at least one drug that selectively targets HIV in viral reservoirs.  相似文献   

14.
Human T-lymphotropic virus (HTLV) is RNA retrovirus, which causes CD3?+?and CD4?+?T-cell type leukemia and demyelinating diseases, like tropical spastic myelopathy. The replicative stage of the virus is one of the critical stages for the development of the disease. At present, there are no approved therapeutic agents targeting HTLV. The HTLV mechanism of malignant cell growth in adult T-cell leukemia (ATL)/lymphoma, and the HTLV-PR has been an attractive target for anticancer drug design. In comparison with other retroviruses, HTLV also encodes protease (PR) enzyme which is essential for maturation. Both the HIV and HTLV proteases show high structural similarity but known inhibitors of HIV-PR are not able to inhibit the HTLV-PR, while comparing the binding pocket of both proteases, MET37 of HTLV shows repulsive role with known HIV inhibitors. Functional analysis of M37A mutation clearly shows that MET37 is highly important for the protease function. Available inhibitors were tested against the HTLV-PR binding pocket and failed to interact with MET37. Screening of similar libraries of known compounds provides better interactions with MET37 and further validation with in vivo and in vitro studies on these screened compounds will provide more strength in discovering potent inhibitor for HTLV-PR.  相似文献   

15.
Human immunodeficiency virus (HIV)-specific CD8(+) T-lymphocyte pressure can lead to the development of viral escape mutants, with consequent loss of immune control. Antiretroviral drugs also exert selection pressures on HIV, leading to the emergence of drug resistance mutations and increased levels of viral replication. We have determined a minimal epitope of HIV protease, amino acids 76 to 84, towards which a CD8(+) T-lymphocyte response is directed. This epitope, which is HLA-A2 restricted, includes two amino acids that commonly mutate (V82A and I84V) in the face of protease inhibitor therapy. Among 29 HIV-infected patients who were treated with protease inhibitors and who had developed resistance to these drugs, we show that the wild-type PR82V(76-84) epitope is commonly recognized by cytotoxic T lymphocytes (CTL) in HLA-A2-positive patients and that the CTL directed to this epitope are of high avidity. In contrast, the mutant PR82A(76-84) epitope is generally not recognized by wild-type-specific CTL, or when recognized it is of low to moderate avidity, suggesting that the protease inhibitor-selected V82A mutation acts both as a CTL and protease inhibitor escape mutant. Paradoxically, the absence of a mutation at position 82 was associated with the presence of a high-avidity CD8(+) T-cell response to the wild-type virus sequence. Our results indicate that both HIV type 1-specific CD8(+) T cells and antiretroviral drugs provide complex pressures on the same amino acid sequence of the HIV protease gene and, thus, can influence viral sequence evolution.  相似文献   

16.
Drug resistance sharply limits the effectiveness of human immunodeficiency virus (HIV) protease inhibitors in acquired immunodeficiency syndrome therapy. In previous work, we presented methods for design of resistance-evading inhibitors using a computational coevolution technique. Here, we report subsite decomposition experiments that examine the relative importance and roles of each subsite in HIV protease, and the constraints on robust inhibitor design that are imposed by possible resistance mutations in each subsite. The results identify several structural features of robust resistance-evading inhibitors for use in drug design, and show their basis in the constraints imposed by the range of allowable mutation in the protease. In particular, the results identify the P3 and P3' sites as being particularly sensitive to protease mutation: inhibitors designed to fill the S3 and S3' sites of the wild-type protease will be susceptible to viral resistance, but inhibitors with side-chains smaller than a phenylalanine residue at P3 and P3', preferably medium-sized amino acids in the range from valine to leucine and isoleucine residues, will be more robust in the face of protease resistance mutation.  相似文献   

17.
The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (A) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease "flaps" stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 A. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k(off) rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k(on) and k(off) data (K(d) = k(off)/k(on)) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.  相似文献   

18.
We studied the role of proteases in apoptosis using a cell-free system prepared from a human leukemia cell line. HL60 cells are p53 null and extremely sensitive to a variety of apoptotic stimuli including DNA damage induced by the topoisomerase I inhibitor, camptothecin. We measured DNA fragmentation induced in isolated nuclei by cytosolic extracts using a filter elution assay. Cytosol from camptothecin-treated HL60 cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This fragmentation was suppressed by serine protease inhibitors. Serine proteases (trypsin, endoproteinase Glu-C, chymotrypsin A, and proteinase K) and papain by themselves induced DNA fragmentation in naive nuclei. This effect was enhanced in the presence of cytosol from untreated cells. Cysteine protease inhibitors (E-64, leupeptin, Ac-YVAD-CHO [ICE inhibitor]) did not affect camptothecin-induced DNA fragmentation. The apopain/Yama inhibitor, Ac-DEVD-CHO, and the proteasome inhibitor, MG-132, were also inactive both in the cell-free system and in whole cells. Interleukin-1β converting enzyme (ICE) or human immunodeficiency virus protease failed to induce DNA fragmentation in naive nuclei. Together, these results suggest that DNA damage activates serine protease(s) which in turn activate(s) nuclear endonuclease(s) during apoptosis in HL60 cells.  相似文献   

19.
Inhibitors of the human immunodeficiency virus (HIV)-1 protease have proven to be effective antiretroviral drugs. However, patients receiving these drugs develop serious metabolic abnormalities, including hypercholesterolemia. The objective of the present study was to identify mechanisms by which HIV protease inhibitors increase plasma cholesterol levels. We hypothesized that HIV protease inhibitors may affect gene regulation of certain LDL receptor (LDLR) family members, thereby altering the catabolism of cholesterol-containing lipoproteins. In this present study we investigated the effect of several HIV protease inhibitors (ABT-378, Amprenavir, Indinavir, Nelfinavir, Ritonavir, and Saquinavir) on mRNA, protein, and functional levels of LDLR family members. Our results demonstrate that one of these drugs, Nelfinavir, significantly decreases LDLR and LDLR-related protein (LRP) mRNA and protein levels, resulting in the reduced functional activity of these two receptors. Nelfinavir exerts its effect by reducing levels of active SREBP1 in the nucleus. The finding that Nelfinavir reduces the levels of two key receptors (LRP and LDLR) involved in lipoprotein catabolism and maintenance of vessel wall integrity identifies a mechanism that causes hypercholesterolemia complications in HIV patients treated with this drug and raises concerns about the atherogenic nature of Nelfinavir.  相似文献   

20.
Urban S  Lee JR  Freeman M 《The EMBO journal》2002,21(16):4277-4286
Drosophila has three membrane-tethered epidermal growth factor (EGF)-like proteins: Spitz, Gurken and Keren. Spitz and Gurken have been genetically confirmed to activate the EGF receptor, but Keren is uncharacterized. Spitz is activated by regulated intracellular translocation and cleavage by the transmembrane proteins Star and the protease Rhomboid-1, respectively. Rhomboid-1 is a member of a family of seven similar proteins in Drosophila. We have analysed four of these: all are proteases that can cleave Spitz, Gurken and Keren, and all activate only EGF receptor signalling in vivo. Star acts as an endoplasmic reticulum (ER) export factor for all three. The importance of this translocation is highlighted by the fact that when Spitz is cleaved by Rhomboids in the ER it cannot be secreted. Keren activates the EGF receptor in vivo, providing strong evidence that it is a true ligand. Our data demonstrate that all membrane-tethered EGF ligands in Drosophila are activated by the same strategy of cleavage by Rhomboids, which are ancient and widespread intramembrane proteases. This is distinct from the metalloprotease-induced activation of mammalian EGF-like ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号