首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outcome of Salmonella infection in the mammalian host favors whoever succeeds best in disturbing the equilibrium between coordinate expression of bacterial (virulence) genes and host defense mechanisms. Intracellular persistence in host cells is critical for pathogenesis and disease, because Salmonella typhimurium strains defective in this property are avirulent. We examined whether similar host defense mechanisms are required for growth control of two S. typhimurium mutant strains. Salmonella pathogenicity island 2 (SPI2) and virulence plasmid-cured Salmonella mutants display similar virulence phenotypes in immunocompetent mice, yet their gene loci participate in independent virulence strategies. We determined the role of TNF-alpha and IFN-gamma as well as different T cell populations in infection with these Salmonella strains. After systemic infection, IFN-gamma was essential for growth restriction of plasmid-cured S. typhimurium, while SPI2 mutant infections were controlled in the absence of IFN-gamma. TNFRp55-deficiency restored systemic virulence to both Salmonella mutants. After oral inoculation, control of plasmid-cured bacteria substantially relied on both IFN-gamma and TNF-alpha signaling while control of SPI2 mutants did not. However, for both mutants, ultimate clearance of bacteria from infected mice depended on alphabeta T cells.  相似文献   

2.
In addition to their role in the virulence attenuation of Salmonella and other pathogens, dam or seqA genes increase the sensitivity towards hydrogen peroxide. The aim of our study is to investigate the effect of H2O2 on the motility, the catalase and superoxide dismutase activities of dam and/or seqA mutants of Salmonella typhimurium. Our findings showed significant differences of the effects of H2O2 on the motility between wild type strain and all of mutants. Hydrogen peroxide changes SOD isoenzyme profile of these mutants by disappearance of Fe-SOD. Concerning the catalase, an increase of its activity was observed in the wild type, dam and seqA mutant. However, H2O2 decreases the activity of this enzyme in the double mutant strain. We can suggest that the dam gene, together with seqA, play a protective role in the oxidative stress response of Salmonella typhimurium.  相似文献   

3.
The alternative sigma factor RpoS (σs) is required for Salmonella virulence in mice. We report the immunizing capacity of Salmonella typhimurlum rpoS and rpoS aroA mutants to protect susceptible BALB/c mice against subsequent oral challenge with virulent S. typhimurium. When administered orally or intraperitoneally, rpoS derivatives of the mouse-virulent S. typhimurium strains, C52 and SL1344, were highly attenuated and were efficient single-dose live vaccines. rpoS aroA mutants were more attenuated than corresponding single aroA or rpoS mutants, as assessed after oral or intraperitoneal administration, but retained significant ability to protect mice against salmonellosis. Salmonella rpoS and rpoS aroA mutants therefore deserve serious consideration for rational vaccine design. Consistent with this, Salmonella typhi Ty2, a ‘wild-type’ strain used widely for the development of human live-vaccine candidates against typhoid fever, was shown to be defective for rpoS. In addition, our results demonstrate that rpoS not only controls the growth and persistence of S. typhimurium in deep lymphoid organs, but also plays a role during the initial stages of oral infection.  相似文献   

4.
Abstract The rpoS (katF) gene, which encodes a RNA polymerase σ factor ( σ s ), regulates the virulence of Salmonella typhimurium in mice. In the present study, we show that rpoS mutants can be frequently found among laboratory strains of Salmonella . In addition, a rpoS mutation was identified in the S. typhi live oral vaccine Ty21a. Introduction of a wild-type rpoS gene in Ty21a allowed the bacteria to survive better under starvation conditions and increased their resistance to other stresses. These results contribute to a better understanding of the genetic background of the live typhoid oral vaccine Ty21a and suggest that the rpoS mutation may contribute to the safety of this strain in humans.  相似文献   

5.
Salmonella typhimurium is an intracellular pathogen that can survive and replicate in macrophages. One of the host defense mechanisms that S. typhimurium encounters upon infection is superoxide produced by the phagocytes' NADPH-oxidase. Salmonella has evolved numerous ways of coping with superoxide in the extracellular environment. In addition, Salmonella has to defend itself against superoxide produced as a by-product of aerobic respiration. Over the last decade, research on bacterial mutants has led to the identification of Salmonella strains that differ from their parental strain in susceptibility to superoxide in vitro. However, the consequences of such mutations for bacterial virulence are highly variable, indicating that superoxide sensitivity per se is not a characteristic that renders Salmonella less virulent. By discussing various bacterial mutants classified according to their in vitro sensitivity to superoxide, we will exemplify the complex mechanisms that Salmonella has evolved to cope with superoxide stress.  相似文献   

6.
Salmonella infection in its mammalian host can be dissected into two main components. The co-ordinate expression of bacterial virulence genes which are designed to evade, subvert or circumvent the host response on the one hand, and the host defence mechanisms which are designed to restrict bacterial survival and replication on the other hand. The outcome of infection is determined by the one which succeeds in disturbing this equilibrium more efficiently. This delicate balance between Salmonella virulence and host immunity/inflammation has important implications for vaccine development or therapeutic intervention. Novel Salmonella vaccine candidates and live carriers for heterologous antigens are attenuated strains with defined genetic modifications of metabolic or virulence functions. Although genetic defects of different gene loci can lead to similar degrees of attenuation, effects on the course of infection may vary, thereby altering the quality of the elicited immune response. Studies with gene-deficient animals indicate that Salmonella typhimurium strains with mutations in aroA, phoP/phoQ or ssrA/ssrB invoke different immune responses and that a differential repertoire of pro-inflammatory cytokines is required for clearance. Consequently, Salmonella mutants defective in distinct virulence functions offer the potential to specifically modulate the immune response for defined medical applications.  相似文献   

7.
The sensitivity of strains of Escherichia coli and Salmonella typhimurium to globomycin is increased in mutants defective in the lipopolysaccharide structure. E. coli mutants altered in the structures or biosynthesis of murein lipoprotein are more resistant to globomycin than the parental strains.  相似文献   

8.
应用PCR技术从鼠伤寒沙门氏菌基因组DNA中克隆phoQ基因片段,构建原核表达pUC18重组质粒,测定序列(GenBank登录号为DQ787014),并转入鼠伤寒沙门氏菌,经异丙基硫代半乳糖苷(IPTG)诱导,进行高效表达。对重组菌株、野生菌株进行毒力检测对比实验,通过口腔注入45日龄健康无菌KM小鼠,测定其半数致死量(LD50)。结果发现:重组菌株与野生菌株的毒力存在显著差异,其半致死量分别为3.981×107 cf u/ mL and 5.012×102 cf u/ mL,PhoQ基因重组菌株的毒力远远低于非重组菌株。说明phoQ基因是调节鼠伤寒沙门氏菌致病机制中一个重要的调节因子。  相似文献   

9.
Salmonella typhimurium cob mutants are not hyper-virulent   总被引:1,自引:0,他引:1  
Abstract It was previously reported that Salmonella typhimurium LT2 cob mutants defective in the biosynthesis of vitamin B12 (cobalamin) are more virulent than the wild type in mice. Here we show that the strains used previously are non-isogenic and that the proposed increase in virulence of the cob mutant strain results from an uncharacterized mutation in the 'wild type' which attenuates virulence, most likely by decreasing expression of the spv genes on the virulence plasmid. As a result the cob mutant will appear as hyper-virulent. Examination of the virulence of reconstructed wild-type and cob mutant strains showed that their growth rates were similar in mice, and we conclude that vitamin B12 does not affect the virulence of S. typhimurium LT2.  相似文献   

10.
A common virulence region on plasmids from eleven serotypes of Salmonella   总被引:23,自引:0,他引:23  
Cured derivatives of Salmonella dublin and S. typhimurium showed reduced virulence following oral infection of mice (10(4)-10(5)-fold for S. dublin, 10(2)-fold for S. typhimurium). Large plasmids from S. dublin and S. typhimurium independently restored virulence to the cured S. dublin but truncated S. dublin plasmids with deletions in a previously identified virulence region did not. This common virulence region identified in plasmids from S. dublin and S. typhimurium was shown to be carried on plasmids from 11 other serotypes of Salmonella but was absent from 10 plasmid-containing serotypes. TnA and Tn10 were transduced from the virulence region of two TnA-insertion mutants of S. dublin and one Tn10-insertion mutant of S. typhimurium that showed diminished virulence to recipient wild-type strains of S. dublin, S. enteritidis and S. typhimurium. Each transductant showed a decrease in mouse virulence within the range 10(3)-10(5). It is therefore proposed that similar virulence determinants are expressed in different serotypes. It was also shown that integration that occurred during curing was Tn10 dependent.  相似文献   

11.
Immunizing potencies of vaccines prepared from various strains of Salmonella were graded by comparing the mortality rate of immunized mice after challenge with highly virulent strains of either Salmonella enteritidis or S. typhimurium. The resistance against this challenge infection was shown to be conferred by joint immunization with a specific factor, which was represented by O specific lipopolysaccharide of smooth strains, and cross-protection factor, which was a major potent factor in live vaccine. The distribution of this cross-protection factor in rough mutants of S. typhimurium was found to be limited to strains which possessed a polysaccharide chain longer than that of glucose1-less mutant. The potency conferring cross-resistance was found to be maintained partly in formalin-killed cells and cell walls of the strains harboring cross-protection factor but not in lipopolysaccharide extracted from such strains.  相似文献   

12.
The study of Salmonella virulent strains has revealed that the characteristic feature of such strains is the presence of plasmids with a molecular weight of 90.2-91.5 kb for S. typhimurium and 77.2-78.5 kb for S. dublin. From Salmonella strains harboring only a single plasmid, variants with no plasmid at all have been obtained. These variants possess lower virulence for mice infected through enteral and intraperitoneal routes; besides, they lose their capacity for penetration into epithelial cells of HeLa line. S. typhimurium and S. dublin have shown decreased multiplication rate in vivo in comparison with the parent strains, while the multiplication rates in vitro were similar. These results suggest that the products of plasmid genes are either responsible for the virulent properties of salmonellae, or they have regulatory functions, thus controlling the work of chromosomal genes.  相似文献   

13.
We present evidence that biological properties of cell membranes are altered in dnaA and seqA mutants of Escherichia coli relative to wild-type bacteria. We found that bacteriophage λ forms extremely large plaques on the dnaA seqA double mutants. On the single mutants, dnaA and seqA, the plaques are also bigger than those formed on the wild-type host. However, no significant differences in intracellular phage λ development were observed between wild-type and mutant hosts, indicating that differences in burst size do not account for the observed differences in plaque size. On the other hand, more efficient release of the phage lytic proteins and/or higher sensitivity of the cell membranes to these proteins may result in more efficient cell lysis. We found that the efficiency of adsorption of bacteriophage λ to the dnaA seqA mutant cells is decreased at 0°?C , but not at 30°?C, relative to the wild-type strain. A considerable increase in the permeability of membranes of the mutant cells for β-galactosidase is demonstrated. The dnaA and seqA mutants are more sensitive to ethanol (an organic solvent) than wild-type bacteria, and the seqA strain and the double mutant dnaA seqA are very sensitive to deoxycholate (a detergent). We conclude that lesions in the genes dnaA and seqA result in alterations in cell membranes, such that the permeability and possibly also other properties of the membranes are significantly altered relative to wild-type bacteria.  相似文献   

14.
CD8+ T cell memory is critical for protection against many intracellular pathogens. However, it is not clear how pathogen virulence influences the development and function of CD8+ T cells. Salmonella typhimurium (ST) is an intracellular bacterium that causes rapid fatality in susceptible mice and chronic infection in resistant strains. We have constructed recombinant mutants of ST, expressing the same immunodominant Ag OVA, but defective in various key virulence genes. We show that the magnitude of CD8+ T cell response correlates directly to the intracellular proliferation of ST. Wild-type ST displayed efficient intracellular proliferation and induced increased numbers of OVA-specific CD8+ T cells upon infection in mice. In contrast, mutants with defective Salmonella pathogenicity island II genes displayed poor intracellular proliferation and induced reduced numbers of OVA-specific CD8+ T cells. However, when functionality of the CD8+ T cell response was measured, mutants of ST induced a more functional response compared with the wild-type ST. Infection with wild-type ST, in contrast to mutants defective in pathogenicity island II genes, induced the generation of mainly effector-memory CD8+ T cells that expressed little IL-2, failed to mediate efficient cytotoxicity, and proliferated poorly in response to Ag challenge in vivo. Taken together, these results indicate that pathogens that proliferate rapidly and chronically in vivo may evoke functionally inferior memory CD8+ T cells which may promote the survival of the pathogen.  相似文献   

15.
Disruption of the seqA gene of Salmonella enterica serovar Typhimurium causes defects similar to those described in E. coli: filament formation, aberrant nucleoid segregation, induction of the SOS response, envelope instability, and increased sensitivity to membrane-damaging agents. Differences between SeqA mutants of E. coli and S. enterica, however, are found. SeqA mutants of S. enterica form normal colonies and do not exhibit alterations in phage plaquing morphology. Lack of SeqA causes attenuation of S. enterica virulence by the oral route but not by the intraperitoneal route, suggesting a virulence defect in the intestinal stage of infection. However, SeqA mutants are fully proficient in the invasion of epithelial cells. We hypothesize that attenuation of SeqA mutants by the oral route may be caused by bile sensitivity, which in turn may be a consequence of envelope instability.  相似文献   

16.
Summary A cosmid gene bank of the virulent Salmonella typhimurium C5 was constructed in Escherichia coli K12. The bank was repackaged into bacteriophage heads and transduced into the semi-rough S. typhimurium strain AS68 which expresses the LamB receptor protein. Approximately 6000 ampicillin-resistant transductants were pooled and used as host for the propagation of bacteriophage P22. The P22 lysate was able to transduce cosmid recombinants to smooth strains of S. typhimurium and individual transductants were selected which complemented various S. typhimurium auxotrophic mutations. A stable mutation was introduced into the aroD gene of S. typhimurium C5. The resulting aroD - mutant, named CU038, was highly attenuated compared with the wild-type parent strain and BALB/c mice immunised orally with CU038 were well protected against challenge with the virulent C5 parental strain. Using the cosmid bank repackaged into bacteriophage P22 heads it was possible to isolate cosmid recombinants that could complement the aroD mutation of CU038 either by in vitro selection using minimal medium or in vivo selection for restoration of virulence in BALB/c mice. Repackaged P22 cosmid banks could provide a simple system for selecting in vivo for Salmonella virulence determinants. A Salmonella typhi strain harbouring mutations in aroA and aroD was constructed for potential use as a live oral typhoid vaccine in humans.  相似文献   

17.
Two strains of Salmonella typhimurium presenting increased mutation rates, either spontaneous or mediated by DNA damage, have been constructed. One of the strains carries a null mutS mutation, while the other harbors plasmid pRW30, which contains the Escherichia coli umuDC operon. The virulence of these strains has been determined by inoculating BALB/c or Swiss mice. The 50% lethal dose of both strains is identical to that obtained for the wild-type. Likewise, the two strains and the wild-type contribute equally to animal death in mixed infections. The frequency of Nal(R) mutants recovered from animals inoculated with either wild-type or MutS(-) cells was not affected by the presence of pRW30. These results indicate that the DNA damage which S. typhimurium cells can suffer during the infectious process by host cell metabolites does not cause induction of the SOS response at levels able to trigger the error-prone DNA repair pathway.  相似文献   

18.
SeqA protein negatively regulates replication initiation in Escherichia coli and is also proposed to organize maturation and segregation of the newly replicated DNA. The seqA mutants suffer from chromosomal fragmentation; since this fragmentation is attributed to defective segregation or nucleoid compaction, two‐ended breaks are expected. Instead, we show that, in SeqA's absence, chromosomes mostly suffer one‐ended DNA breaks, indicating disintegration of replication forks. We further show that replication forks are unexpectedly slow in seqA mutants. Quantitative kinetics of origin and terminus replication from aligned chromosomes not only confirm origin overinitiation in seqA mutants, but also reveal terminus under‐replication, indicating inhibition of replication forks. Pre‐/post‐labelling studies of the chromosomal fragmentation in seqA mutants suggest events involving single forks, rather than pairs of forks from consecutive rounds rear‐ending into each other. We suggest that, in the absence of SeqA, the sister‐chromatid cohesion ‘safety spacer’ is destabilized and completely disappears if the replication fork is inhibited, leading to the segregation fork running into the inhibited replication fork and snapping the latter at single‐stranded DNA regions.  相似文献   

19.
20.
Live attenuated Salmonella are attractive vaccine candidates for mucosal application because they induce both mucosal immune responses and systematic immune responses. After breaking the epithelium barrier, Salmonella typhimurium is found within dendritic cells (DC) in the Peyer's patches. Although there are abundant data on the interaction of S. typhimurium with murine epithelial cells, macrophages and DC, little is known about its interaction with human DC. Live attenuated S. typhimurium have recently been shown to efficiently infect human DC in vitro and induce production of cytokines. In this study, we have analysed the morphological consequences of infection of human DC by the attenuated S. typhimurium mutant strains designated PhoPc, AroA and SipB and the wild-type strains of the American Type Culture Collection (Manassas, VA, USA), ATCC 14028 and ATCC C53, by electron microscopy at 30 min, 3 h and 24 h after exposure. Our results show that genetic background of the strains profoundly influence DC morphology following infection. The changes included (i) membrane ruffling; (ii) formation of tight or spacious phagosomes; (iii) apoptosis; and (iv) spherical, pedunculated membrane-bound microvesicles that project from the plasma membrane. Despite the fact that membrane ruffling was much more pronounced with the two virulent strains, all mutants were taken up by the DC. The microvesicles were induced by all the attenuated strains, including SipB, which did not induce apoptosis in the host cell. These results suggest that Salmonella is internalized by human DC, inducing morphological changes in the DC that could explain immunogenicity of the attenuated strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号