首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the experiment was to investigate the potential for using a single injection of the GnRH agonist [D-Trp(6), Pro(9)-des-Gly(10)-NH(2)] GnRH-ethylamide (deslorelin) to suppress LH secretion in ovariectomised Holstein cows. Each dose of 10, 100 and 1000 microg deslorelin was injected intravenously into each of four ovariectomised cows on day 0. Blood samples were collected hourly on day 0 to profile the induced LH release. Frequent serial blood samples were collected at 10min intervals over 4h on days -3, -1, +2, +4 and +6. The injection of deslorelin induced a surge-like release of LH that begun within 1h in all cows. There was no difference between deslorelin doses in terms of maximum LH concentration, area under the LH curve (AUC) or log(10)(AUC). The average interval from injection to maximum LH concentration was longer for cows receiving 1000 microg than in those receiving 10 microg (3.5 versus 1.5h; P<0.01), though no different to 100 microg (2.8h; P>0.1). This relationship was described by a logarithmic function of deslorelin dose in micrograms (R(2)=73.3%, P<0.01). Pre-treatment smoothed mean LH concentration was significantly correlated with peak LH concentration of the induced surge: max_LH=5.37+9.57 x pre-amplitude (R(2)=33.2%, P=0.05). Similarly, LH pulse amplitude pre-deslorelin was also correlated with peak LH of the induced surge max_LH=0.07+12.9 x pre-amplitude (R(2)=53.7%, P=0.07). Pulsatile release of LH was suppressed only with the 1000 microg dose on day +2. Suppression was characterised by a reduction in mean LH, smoothed mean LH and LH pulse amplitude. By day +4, LH parameters were no different to pre-treatment ones. Pulse frequency was not affected by the treatment, although a small non-significant reduction at day +2 for 1000 microg dose was observed (3.9 versus 2.8, P=0.14). In conclusion, temporary suppression of LH output for at least 48h occurred following a single intravenous injection of 1000 microg of deslorelin, even though there were similar peak LH concentrations were for the three doses.  相似文献   

2.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

3.
In ovariectomized pigs, estradiol treatment induces a preovulatory-like luteinizing hormone (LH) surge, but only after serum LH concentrations are suppressed for 48 h. This inhibition of LH release is attributable in large part to inhibition of gonadotropin-releasing hormone (GnRH) release. The present report examines the dependency of the estradiol-induced LH surge on this preceding phase of negative feedback. Ten ovariectomized gilts were given an i.m. injection of estradiol benzoate (10 micrograms/kg BW). Beginning at the time of estradiol treatment, 5 of these gilts received 1-microgram GnRH pulses i.v. every 45 min for 48 h, i.e. during the period of negative feedback. The remaining 5 control gilts received comparable infusions of vehicle. Estradiol induced the characteristic biphasic LH response in control gilts. On the other hand, the inhibitory LH response to estradiol was prevented and the ensuing LH surge was blocked in 4 of the 5 gilts given GnRH pulses during the negative feedback phase. These results indicate that suppressing release of GnRH and/or LH is an important antecedent to full expression of the LH surge in ovariectomized pigs. Assimilation of this observation with the existing literature provides novel insights into the neuroendocrine control of LH secretion in castrated and ovary-intact gilts.  相似文献   

4.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   

5.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

6.
This study was conducted to determine whether or not exogenous gonadotropin releasing hormone (GnRH) alters the timing or improves the synchrony of estrus, the LH surge, and ovulation following estrous synchronization in dwarf goats, and to assess the effects of season on these parameters. In January and June, estrus was synchronized in 12 Pygmy and Nigerian Dwarf goats with a 10-day progestagen sponge, 125 microg cloprostenol i.m. 48 h before sponge removal, and 300 IU equine chorionic gonadotrophin (eCG) i.m. at sponge removal. Six of the 12 goats were given 50 microg GnRH i.m. 24h after sponge removal. Onset of estrus was monitored using two males. Samples for plasma LH were collected at 2 h intervals beginning 22 h after sponge removal and ending at 48 h in January and at 58 h in June. Time of ovulation time was confirmed by laparoscopy at 36, 50, 60, and 74 h in January and at 50, 60, and 74 h in June. Administration of GnRH had no significant effect on the onset of estrus; however, it reduced the interval from sponge removal to the LH surge and improved the synchrony of the LH surge (P<0.05). Treatment with GnRH also reduced the interval from sponge removal to ovulation and improved the synchrony of ovulation (P<0.05). Season had a significant effect on the timing and the synchrony of estrus with and without GnRH treatment (P<0.05). A seasonal shift was also observed in the timing of the LH surge in the absence of GnRH treatment (P<0.05). Further research is required to determine the optimum time for GnRH administration and the minimum effective dose in dwarf goats.  相似文献   

7.
Maintaining surplus captive male antelope in bachelor groups can result in aggression in some species, leading to injury or death. Suppressing endogenous testosterone using gonadotropin‐releasing hormone (GnRH) analogs has been used in primates to control aggressive behavior, but little information is available on the use of GnRH analogs in nondomestic ruminant species. The aim of this study was to investigate the effect of a slow‐release GnRH agonist (deslorelin) on circulating hormone concentrations, semen and sperm characteristics and behavior in male gerenuk, dorcas gazelle, and scimitar horned oryx. Body weight, testicular volume, circulating hormone concentrations, ejaculate traits, and behavior were recorded before and during deslorelin treatment. A GnRH challenge (with serial blood sampling) was administered to gerenuk and dorcas gazelles before and during GnRH analog treatment. Quantitative behavioral data were collected for gerenuk and dorcas gazelles for 30 min three times a week, starting 1 month before deslorelin treatment, and the mean incidence of combined aggressive behaviors (supplanting, foreleg kicking, sparring, marking, and mounting) was compared before and during deslorelin treatment. No statistical difference (P>0.05) in body weight, semen volume, sperm concentration, percent sperm motility, percent sperm plasma membrane integrity, or percent normal sperm morphology was found before or during deslorelin treatment. The characteristic rise in luteinizing hormone (LH), occurring ~10 min following administration of a GnRH challenge in untreated males, was not evident during deslorelin treatment, although tonic LH concentrations were maintained. No differences (P>0.05) in the mean incidence of any aggressive behavioral traits in gerenuk or dorcas gazelle were detected before and during deslorelin. The absence of a GnRH‐induced increase in serum LH in treated males indicated that deslorelin suppressed pituitary responsiveness to endogenous GnRH, but that the continued tonic production of LH was sufficient to maintain testosterone production, aggressive behavior, and subsequent semen production. Zoo Biol 21:435–448, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

8.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

9.
The objectives of the study were firstly to identify the role of the ovary in maintaining plasma luteinising hormone (LH) concentrations in cows treated with an implant of a potent GnRH agonist (deslorelin), and secondly to characterise the changes in LH following ovariectomy (OVX) in the same animals. Oestrus was synchronised in mature Holstein dairy cows and deslorelin implants were inserted 17 days later into two-third of the cows. A further 10 days later (day 0) all cows had bilateral OVX performed. A control group (CON; n=4) received no treatment and had blood samples collected at 15-min intervals for 8h on the day prior to OVX (day -1) and similarly on days 4 and 10. One group (DES_IN; n=4) had implants in place for the duration of the study while another group had implants removed (DES_OUT; n=4) at the time of OVX. DES_IN cows were sampled hourly at each sampling session (days -1, +4 and +10), whereas DES_OUT cows were sampled similarly to CON except on day -1 when hourly samples were collected.Predictable post-operative increases in mean LH (0.61 ng/ml versus 1.79 ng/ml; P<0.01) and LH pulse amplitude (0.66 ng/ml versus 1.56 ng/ml; day -1 versus day +10; P<0.01) occurred after CON cows were ovariectomised. Smoothed LH means showed a delayed effect of time compared to arithmetic means. Pulse frequency was unchanged following OVX in CON cows. A comparison of all cows that had been treated with deslorelin from day -1 showed a significant elevation of smoothed mean LH compared to untreated cows (0.80 ng/ml versus 0.34 ng/ml; DES_IN and DES_OUT versus CON; P<0.05). DES_IN cows had a 54% reduction in mean LH from day -1 to +4 following OVX (1.05 ng/ml versus 0.48 ng/ml; P<0.01) indicating the probable involvement of the ovary in the maintenance of elevated basal LH. No further reduction was detected by day +10. The LH response to an intramuscular (IM) injection of 500 microg 17beta-oestradiol (E2) on day +11 varied significantly between treatment groups (P<0.01). CON cows showed a typical LH surge, reaching maximum concentrations (10.3 ng/ml) at 17.3h post-injection. Even though low amplitude LH pulsatility had been restored in DES_OUT cows by day +4, there was an inconsistent response to E2 on day +12; one cow had an apparently normal surge yet, others showed only attenuated responses. Pulse amplitude in DES_OUT cows was lower at days +4 and +10 compared to CON (P<0.05). DES_IN cows did not produce any surge after E2. Mean LH prior to OVX (day -1) remained unchanged following the 500 microg oestradiol injection (0.38 ng/ml versus 0.45 ng/ml pre-E2 versus post-E2 compared to 1.05 ng/ml pre-OVX).The results of this experiment implicated ovarian involvement in maintaining elevated basal LH output in cows that were chronically treated with a GnRH agonist. Individual cows varied in their LH surge response to exogenous E2 given 12 days after implant removal, even though LH pulse amplitude and frequency had been restored.  相似文献   

10.
The objectives were to determine hypothalamic regulation of pulsatile luteinizing hormone (LH) secretion in female pigs and the biphasic feedback actions of estradiol-17beta (E(2)-17beta). In the first study, the minimum effective dosage of E(2)-17beta that would induce estrus in ovariectomized gilts was determined to be 20microg/kg body weight. In the second study, ovariectomized gilts were assigned randomly on day 0 to treatments: (a) hypophyseal stalk transection (HST), (b) cranial sham-operated control (SOC), and (c) unoperated control (UOC). On day 3, gilts from each group received a single i.m. injection of either E(2)-17beta (20microg/kg body weight) or sesame oil. Blood was collected from an indwelling jugular cannula at 15min intervals for 3h before (day -2) and after treatment (day 2) from HST, SOC and UOC gilts. On day 3, blood was collected at 2h intervals for 12h after E(2)-17beta or sesame oil injection and at 4h intervals thereafter for 108h. Pulsatile LH secretion in all gilts 2 days after ovariectomy exhibited a frequency of 0.9+/-0.06peaks/h, amplitude of 1.3+/-0.13ng/ml, baseline of 0.8+/-0.07. Serum LH concentrations from SOC and UOC gilts were similar on day 2 and profiles did not differ from those on day -2. In HST gilts pulsatile LH release was abolished and mean LH concentration decreased compared with controls (0 versus 0.9+/-0. 06peaks/h and 0.77+/-0.03 versus 1.07+/-0.07ng/ml, respectively; P<0. 05). E(2)-17beta or sesame oil did not affect serum LH concentration in HST gilts, and LH remained constant throughout 120h (0.7+/-0. 07ng/ml). In SOC and UOC control gilts, E(2)-17beta induced a 60% decrease (P<0.05) in LH concentration within 12h, and LH remained low until 48h, then increased to peak values (P<0.05) by 72h, followed by a gradual decline to 120h. Although pituitary weight decreased 31% in HST gilts compared with controls (228 versus 332mg, P<0.05), an abundance of normal basophils was evident in coronal sections of the adenohypophysis of HST comparable to that seen in control gilts. The third and fourth studies determined that hourly i. v. infusions of LHRH (2microg) and a second injection of E(2)-17beta 48h after the first had no effect on the positive feedback action of estrogen in UOC. However, in HST gilts that received LHRH hourly, the first injection of E(2)-17beta decreased (P<0.05) plasma LH concentrations while the second injection of E(2)-17beta failed to induce a positive response to estrogen. These results indicate that both pulsatile LH secretion and the biphasic feedback action of E(2)-17beta on LH secretion depend on hypothalamic regulatory mechanisms in the gilts. The isolated pituitary of HST gilts is capable of autonomous secretion of LH; E(2)-17beta will elicit direct negative feedback action on the isolated pituitary gland if the gonadotropes are supported by exogenous LHRH, but E(2)-17beta at high concentrations will not induce positive feedback in isolated pituitaries. Thus, the direct effect of E(2)-17beta on the pituitary of monkeys cannot be mimicked in pigs.  相似文献   

11.
Two experiments were conducted with prepuberal gilts at 60, 120 and 160 days of age to a) determine the effect of 6-methoxybenzoxazolinone 6-MBOA) on reproductive plasma hormone concentrations and organ development, and b) determine how plasma follicle-stimulating hormone (FSH) and luteinizing hormone (LH) concentrations before and after injection of gonadotropin-releasing hormone (GnRH) or 6-MBOA varied in relation to ovarian development. In Exp. 1, 12 gilts were used in a 4×4 Latin square design. Four gilts/age group were injected once with: 1) vehicle, 2.5% propylene glycol in 50% ethanol, 2) 2 μg of GnRH/kg body weight (BW), 3) 0.2 mg of 6-MBOA/kg BW, and 4) 2 mg of 6-MBOA/kg BW on four successive days in random order. Blood was collected via indwelling vena cava catheters. Injection of GnRH into gilts increased plasma FSH and LH at each age compared with vehicle (P<0.05). Hormone profiles for FSH and LH differed among age groups (P<0.01), but area under curves did not differ significantly among age groups. Injection of 6-MBOA did not significantly affect plasma FSH and LH. Plasma FSH and LH before the GnRH injection or on days when GnRH was not injected were greater at 60 than at 120 and 160 days (FSH, 128 vs 54 and 42 ng/ml; LH, 0.38 vs 0.16 and 0.13 ng/ml for 60, 120 and 160 days, respectively (P<0.05). In Exp. 2, vehicle, 0.2 or 2 mg of 6-MBOA/kg BW were injected once daily for 7 days in 19 gilts. Injections of 6-MBOA had no detectable effects on gonadotropin secretion, ovarian development or uterine weight. Between 60 and 120 days of age, vesicular follicles developed, ovarian weight increased 20-fold, and uterine weight increased 10-fold (P<0.05); basal concentrations of plasma FSH and LH decreased three- and twofold, respectively.  相似文献   

12.
Based on the supposition that lamprey GnRH-III (lGnRH-III) elicits FSH releasing activity in swine, synthetic lGnRH-III (peforelin, Maprelin® XP10) was used in puberal estrus synchronized gilts. The secretion of reproductive hormones FSH, LH, estradiol and progesterone was analyzed, and follicle growth and ovulation recorded. Altogether, 24 German Landrace gilts were treated after an 18-day long synchronization of the estrus cycle with Regumate® as follows: 48 h after the last Regumate® feeding they received im either 150 μg Maprelin® XP10 (lGnRH-III, group Maprelin, n = 6), 50 μg Gonavet Veyx® (GnRH-I agonist, group GnRH, n = 6), 850 IE Pregmagon® (eCG, group eCG, n = 6) or saline (group Control, n = 6). Additionally, in eight gilts the concentrations of FSH and LH were analyzed after treatment with 150 μg Maprelin® XP10 (n = 3), 50 μg Gonavet Veyx® (n = 3) or saline (n = 2) at mid-cycle (day 10 of the estrus cycle). Blood samples were collected via implanted jugular vein catheters. Ovarian features were judged endoscopically at the end of the Regumate® feeding and on days 5 and 6 after treatment. Maprelin® XP10 had no effect on FSH release in gilts; neither at the pre-ovulatory period or at mid-cycle. Furthermore, LH levels were unaffected. In contrast, GnRH-I agonist stimulates FSH release, however less compared to LH secretion. LH secretion was induced by GnRH-I both during the follicular phase and at mid-cycle. Equine CG did not stimulate the release of pituitary hormones FSH and LH due to its direct action on the ovary. Increased estradiol concentrations during days 2 to 5 after Regumate® in all treatment groups indicated pre-ovulatory follicle growth in gilts. Equine CG stimulated a higher (P < 0.01) number of ovulatory follicles compared to the other treatment groups. All together, 83 to 100 % of gilts ovulated by day 6 post treatment. In summary, results of our study on reproductive hormone secretion do not provide evidence that synthetic lGnRH-III (Maprelin® XP10) selectively releases FSH in estrus synchronized gilts.  相似文献   

13.
14.
Ovariectomized gilts (n = 63) were given estradiol benzoate (estradiol), antiserum to neutralize endogenous GnRH, and pulses of a GnRH agonist (GnRH-A) to stimulate release of LH. GnRH-A was given as 200-ng pulses hourly from 0 to 54 h and as 100- or 200-ng pulses every 30 or 60 min from 54 to 96 h after estradiol. Estradiol alone suppressed LH from 6 to 54 h and elicited an LH surge that peaked at 72 h. When GnRH-A was given every 30-60 min from 0 to 96 h, estradiol suppressed LH for 6-12 h, but then LH returned to pre-estradiol concentrations. When pulses of GnRH-A were given only between 54 and 96 h after estradiol, the surge of LH was related positively to dose and frequency of GnRH-A. We conclude that 1) estrogen acts at the hypothalamus to inhibit release of GnRH for 54 h and then causes a synchronous release of GnRH; 2) estrogen acts at the pituitary to block its response to GnRH for 6-12 h and enhances the accumulation of releasable LH; and 3) magnitude of the LH surge is dependent on the amount of GnRH stimulation.  相似文献   

15.
Three studies were conducted to investigate the endocrine and ovulatory responses of the prepubertal gilt to exogenous estradiol and gonadotropins. In Study One, prepubertal gilts of 190 days of age were injected s.c. with pregnant mare's serum gonadotropin (PMSG) or physiological saline (SAL). Following PMSG injection, circulating levels of estradiol-17 beta (E2) increased. This increase was followed by a surge of luteinizing hormone (LH), estrus, a rise in progesterone (P4) levels, and ovulation. None of the gilts given SAL had increased levels of E2, LH or P4, and none ovulated. In Study Two, prepubertal gilts of 165 days of age were treated with varying doses of PMSG. A positive correlation was observed between dose of PMSG and peak levels of E2 (r = 0.83, P less than 0.001) and between dose of PMSG and number of corpora lutea (r = 0.96, P less than 0.001). In Study Three, gilts were treated at ages of 70 to 190 days with estradiol benzoate (EB), PMSG, or corn oil plus saline (CO/SAL) followed in 72 to 96 h by human chorionic gonadotropin (hCG) or SAL. All gilts treated with EB at 100 to 175 days of age had two surges of LH at an approximately 24-h interval. Gilts responding to EB at 70 and 190 days had only one surge of LH. Gilts of 100 days of age or older responded to PMSG with a single surge or two surges of LH. Ovulation in response to treatment was observed in gilts of 100 days of age or greater but not at 70 days. The conclusions drawn from these studies are that 1) PMSG-induced ovulation is preceded by an increase in circulating levels of E2 and in some gilts by a surge of LH, and 2) prepubertal gilts are able to respond to exogenous endocrine stimulation with either a single surge or multiple surges of LH at 70 to 190 days but are unable to ovulate in response to exogenous gonadotropins until 100 days of age.  相似文献   

16.
Steroid hormones are known to affect synthesis and/or release of some peptides in the central nervous system and peripheral tissues. In the present study we determined changes in beta-endorphin, GnRH and galanin contents in uterine and oviductal tissues of ovariectomized (OVX) gilts following treatment with estradiol benzoate (EB) at a dose inducing a preovulatory-like LH surge. Seven month old gilts (90-100 kg of body weight; BW) were used in the study. Four weeks after ovariectomy, experimental animals were injected intramuscularly with EB (15 microg/kg BW) at 24 h (n=5), 48 h (n=6) or 72 h (n=5) before slaughter. Three control gilts received corn oil vehicle. Tissues were sampled from the ampulla and isthmus of the oviduct and from the perioviductal, middle and paracervical regions of the uterine horn for determination of beta-endorphin, GnRH and galanin content. Significant increases of beta-endorphin content were found in all regions of the uterus either 24 h or 48 h after priming with EB. In oviductal tissue, beta-endorphin concentration only tended to increase in response to EB. GnRH content in tissues originating from gilts receiving EB fluctuated from a stimulation in the ampulla of the oviduct and in the paracervical uterus to an inhibition in the middle part of the uterus. A significantly increased concentration of galanin in response to EB was observed exclusively in the paracervical part of the OVX pig uterus. The results suggest an involvement of beta-endorphin, GnRH and galanin in the regulation of uterine function in pigs during the periovulatory period.  相似文献   

17.
Whether estradiol targets a subpopulation of gonadotrope cells was investigated in this study. Ovariectomized ewes (OVX) or OVX ewes immunized against GnRH and treated with hourly pulses of GnRH analogue (OVX-IMG) were killed at 6, 12, 16, and 24 h after administration of 50 microg of 17beta-estradiol (E(2)). Control ewes received no E(2) treatment. In OVX or OVX-IMG ewes killed 6 h after E(2) injection, a decrease in gonadotropin plasma levels was observed compared with non-E(2)-treated ewes. In contrast, a surge in gonadotropin plasma concentrations occurred in ewes killed 16 h after injection. The percentage of total immunoreactive gonadotrope cells among the pituitary cells was lower in E(2)-treated ewes compared with nontreated animals. The proportion of monohormonal LH cells was constant throughout the experiment, except at the surge peak, where it was enhanced. In the OVX ewes, the proportion of bihormonal LH/FSH cells was lower in the E(2)-treated ewes compared to the nontreated ewes (P: < 0.001), with a more pronounced decrease 16 h after E(2) injection. A slight increase occurred 12 h after E(2) injection compared with 6 h after injection (P: < 0.05). A similar pattern was observed in the OVX-IMG ewes, except at 12 h after E(2) injection, when no increase occurred. In both OVX and OVX-IMG ewes, injection of E(2) decreased FSHbeta mRNA expression but did not alter the relative levels of LHbeta mRNA. These data suggest that the negative feedback of E(2) on LH and FSH secretion mainly targets the bihormonal cells and occurs, at least in part, directly at the pituitary level. During the gonadotropin surge, the sustained FSH release from the bihormonal cells would induce a switch from bihormonal cells to monohormonal LH cells by depleting these cells of FSH.  相似文献   

18.
Ghrelin, a novel endogenous growth hormone (GH) secretagogue, has been shown to exert very potent and specific GH-releasing activity in rats and humans. However, little is known about its GH-releasing activity and endocrine effects in domestic animals. To clarify the effect of ghrelin on GH secretion in vivo in ruminants, plasma GH responses to intra-arterial and intra-hypothalamic injections of rat ghrelin (rGhrelin) were examined in goats and cattle. The intra-arterial injection of 1 microg/kg BW of rGhrelin in ovariectomized goats failed to stimulate GH release, however, a dosage of 3 microg/kg BW significantly increased plasma GH concentrations (P<0.05). GH levels peaked at 15 min after the injection, then decreased to basal concentrations within 1 h after the injection. However, the secretory response to 3 microg/kg BW of rGhrelin was weaker than that of growth hormone-releasing hormone (GHRH) (0.25 microg/kg BW) (P<0.05). An infusion of 10 nmol of ghrelin into the medial basal hypothalamus (arcuate nucleus) significantly stimulated the release of GH in male calves (P<0.05). GH levels began to rise just after the infusions and peaked at 10 min, then decreased to the basal concentrations within 1 h after the injection. The present results show that ghrelin stimulates GH release in ruminants.  相似文献   

19.
The capacity of heifer calves of a late sexually maturing Zebu (Bos indicus) genotype to respond to superstimulation with FSH at a young age and in vitro oocyte development were examined. Some calves were treated with a GnRH agonist (deslorelin) or antagonist (cetrorelix) to determine whether altering plasma concentrations of LH would influence follicular responses to FSH and oocyte developmental competency. Brahman calves (3-mo-old; 140 +/- 3 kg) were randomly assigned to 3 groups: control (n = 10); deslorelin treatment from Day -8 to 3 (n = 10); and cetrorelix treatment from Day -3 to 2 (n = 10). All calves were stimulated with FSH from Day 0 to 2, and were ovariectomized on Day 3 to determine follicular responses to FSH and to recover oocytes for in vitro procedures. Before treatment with FSH, heifers receiving deslorelin had greater (P < 0.001) plasma LH (0.30 +/- 0.01 ng/ml) than control heifers (0.17 +/- 0.02 ng/ml), while plasma LH was reduced (P < 0.05) in heifers treated with cetrorelix (0.13 +/- 0.01 ng/ml). Control heifers had a surge release of LH during treatment with FSH, but this did not occur in heifers treated with deslorelin or cetrorelix. All heifers had large numbers of follicles > or = 2 mm (approximately 60 follicles) after superstimulation with FSH, and there were no differences (P > 0.10) between groups. Total numbers of oocytes recovered and cultured also did not differ (P > 0.05) for control heifers and heifers treated with deslorelin or cetrorelix. Fertilization and cleavage rates were similar for the 3 groups, and developmental rates to blastocysts were also similar. Zebu heifers respond well to superstimulation with FSH at a young age, and their oocytes are developmentally competent.  相似文献   

20.
The temporal relationships of serum prolactin, oestrogen and LH concentrations during the perioestrous period were compared in prepubertal gilts induced to ovulate by PMSG and hCG and in mature gilts. In Exp. 1, 2 sustained prolactin surges, beginning 4 days and 1 day before the preovulatory LH surge, occurred in all mature gilts. A single preovulatory prolactin surge occurred in 3 prepubertal gilts, starting just before the preovulatory LH surge, but 4 prepubertal gilts had neither a prolactin nor an LH surge. A status (prepubertal or mature) versus time interaction (P less than 0.01) was detected for serum prolactin concentrations. A preovulatory oestrogen surge occurred in all gilts but was of lesser magnitude (P less than 0.01) and duration (P less than 0.05) in the prepubertal gilts without prolactin and LH surges compared to mature gilts and of lesser magnitude (P less than 0.01) compared to prepubertal gilts with prolactin and LH surges. The relative timing of the oestrogen surge in prepubertal gilts corresponded with that of mature gilts when adjusted to the LH surge (if present) but was delayed (P less than 0.01) in all prepubertal gilts if standardized to the hCG injection. In Exp. 2, mature gilts were examined to determine whether 2 perioestrous prolactin surges were characteristic of all cycling gilts. Of 9 gilts, 8 exhibited an initial prolactin surge 4-5 days before oestrus and 5/9 gilts exhibited a periovulatory prolactin surge. The presence of 2 perioestrous serum prolactin surges was not a requirement for subsequent pregnancy maintenance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号