首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Release of histamine from human basophils was induced by activation of complement using zymosan. The histamine-releasing factor resembled C5a on the basis of m.w. (15,000) as well as previous studies showing inactivation by anti-C5. Complement-induced release of histamine was compared with allergic release of histamine which is mediated through appropriate allergens and reaginic IgE. Previously we demonstrated that the former reaction occurred more quickly. Both reactions were inhibited by drugs which increase intracellular concentrations of cAMP3 (theophylline, prostaglandin E1, and histamine) or which mimic the action of cAMP (its dibutyrly derivative). Calcium was required for complement-mediated release of histamine and an increasing response was observed up to physiologic concentrations (2 mM). Magnesium (0 to 1 mM) did not affect the amount of histamine released. Also, glycolysis was probably required for optimal release by complement, since both 2-deoxyglucose and iodoacetamide were inhibitory. When basophils were partly enriched by depletion of neutrophils and eosinophils, the percentage of histamine released by complement was unchanged. Finally, it was shown that activated complement desensitized basophils from responding to a second challenge by the same stimulus. Cross-desensitization was not observed between complement and pollen allergens.  相似文献   

2.
The incubation of zymosan, endotoxin, or immune aggregates with normal human serum activates a factor which induces release of histamine from autologous basophils. The reaction can be divided into two steps: in the first, complement must be activated and in the second, the histamine-releasing factor interacts with basophils. The generation of histamine-releasing activity in serum occurs at 17 to 37 degrees C but not at 0 degrees C, is inhibited by heating the serum at 56 degrees C for 30 min, or by the addition of EDTA to the serum. Once generated, the histamine-liberating activity is stable to heating at 56 degrees C for 30 min. Gel filtration of the activated serum demonstrated that this factor eluted in the same region as a factor with chemotactic activity. Both factors have a molecular weight of about 16,000 daltons and their activities were inhibited by antibody to human C5. This is therefore a pathway for histamine release by C5a where the activation of the basophil is unrelated to the membrane bound IgE.  相似文献   

3.
Human peripheral blood monocytes generated activities during 24-h culture that were capable of triggering histamine release from 17 of 18 human basophil donors. Monocytes and their in vitro transformed macrophages continued to elaborate these basophil histamine-releasing activities for at least 3 wk in culture. In the 18 basophil donors tested, maximum histamine release induced by monocyte supernatants was 33.8 +/- 5.9% (mean +/- SEM) of total basophil histamine content; optimum anti-IgE-induced release was 38.8 +/- 6.2%. Basophil histamine release in response to monocyte activities was optimal at 37 degrees C and at calcium concentrations of 2 to 5 mM. Release was greater than 90% complete 1 min after challenge and was inhibited by anti-allergic drugs. The mechanism of release appeared to be independent of IgE binding. Gel filtration of supernatants derived from both day 1 (monocyte stage) and day 14 (macrophage stage) cultures demonstrated activity peaks with approximate m.w. of 12,000 and 30,000. In contrast to the marked responsiveness of basophils, only 2 of 10 human lung mast cell preparations responded; release in those preparations was low: 3% and 13% histamine release, respectively. Thus, monocytes produce potent histamine-releasing activities with differential actions on basophils and mast cells.  相似文献   

4.
Peptostreptococcus magnus strain 312 (10(6) to 10(8)/ml), which synthesizes a protein capable of binding to kappa L chains of human Ig (protein L), stimulated the release of histamine from human basophils in vitro. P. magnus strain 644, which does not synthesize protein L, did not induce histamine secretion. Soluble protein L (3 x 10(-2) to 3 micrograms/ml) induced histamine release from human basophils. The characteristics of the release reaction were similar to those of rabbit IgG anti-Fc fragment of human IgE (anti-IgE): it was Ca2(+)- and temperature-dependent, optimal release occurring at 37 degrees C in the presence of 1.0 mM extracellular Ca2+. There was an excellent correlation (r = 0.82; p less than 0.001) between the maximal percent histamine release induced by protein L and that induced by anti-IgE, as well as between protein L and protein A from Staphylococcus aureus (r = 0.52; p less than 0.01). Preincubation of basophils with either protein L or anti-IgE resulted in complete cross-desensitization to a subsequent challenge with the heterologous stimulus. IgE purified from myeloma patients PS and PP (lambda-chains) blocked anti-IgE-induced histamine release but failed to block the histamine releasing activity of protein L. In contrast, IgE purified from myeloma patient ADZ (kappa-chains) blocked both anti-IgE- and protein L-induced releases, whereas human polyclonal IgG selectively blocked protein L-induced secretion. Protein L acted as a complete secretagogue, i.e., it activated basophils to release sulfidopeptide leukotriene C4 as well as histamine. Protein L (10(-1) to 3 micrograms/ml) also induced the release of preformed (histamine) and de novo synthesized mediators (leukotriene C4 and/or PGD2) from mast cells isolated from lung parenchyma and skin tissues. Intradermal injections of protein L (0.01 to 10 micrograms/ml) in nonallergic subjects caused a dose-dependent wheal-and-flare reaction. Protein L activates human basophils and mast cells in vitro and in vivo presumably by interacting with kappa L chains of the IgE isotype.  相似文献   

5.
Wortmannin, a specific inhibitor of myosin light chain kinase (MLCK) blocked IgE mediated histamine release from rat basophilic leukemia cell (RBL-2H3) and human basophils dose-dependently. Its IC50 was 20 nM for RBL-2H3 cells and 30 nM for human basophils. There was complete inhibition at the concentration of 1 microM. Wortmannin inhibited partially the A23187 induced histamine release from RBL-2H3 cells (40% inhibition at 1 microM). This inhibition was not accompanied by any significant effect on cytosolic free calcium concentration [( Ca2+]i). KT5926, another MLCK inhibitor, inhibited histamine release comparably with wortmannin and blocked to some degree the increase of [Ca2+]i in RBL-2H3 cells. Thus, the phosphorylation of myosin seems to be involved in signal transduction through Fc epsilon RI.  相似文献   

6.
We have previously purified and partially characterized histamine releasing factors (HRF), which were derived from a mixture of human mononuclear cells and platelets. We now report the effect of IL-8 upon HRF-, connective tissue activating peptide III (CTAP III)-, and IL-3-induced histamine release from human basophils. We determined that IL-8 itself, at concentrations between 10(-7) to 10(-11) M, does not release histamine from basophils, although positive results are observed in two of 26 subjects at 10(-7) M. Unfractionated (crude) HRF released histamine in 25 of 26 donors, in the range of 6.7% to 100% of total basophil histamine stores. When basophils were preincubated with IL-8 (10(-7) to 10(-11) M) for 5 min, followed by a 40-min incubation with HRF, histamine release was significantly inhibited in 20 of 25 donors. Inhibition was observed at as little as 10(-11) M IL-8, with maximal inhibition being attained at 10(-9) M. HRF-containing supernatants contain a mixture of different histamine-releasing moieties. To better define which factor(s) may be inhibited by IL-8, fractionated supernatants, purified CTAP III, and IL-3 were studied. Histamine release produced by two different HRF-containing chromatographic fractions (HRFvoid and HRFpeak 2) and purified CTAP-III (5 micrograms/ml) was inhibited by IL-8 in 10 of 12 donors, three of three donors, and seven of 10 donors, respectively. IL-3 (5000 U/ml)-dependent histamine release was inhibited by IL-8 in all subjects tested. In contrast, histamine release by anti-IgE and FMLP was not affected by IL-8. Thus, IL-8 appears to be an inhibitor of cytokine-like molecules that induce histamine release and may represent the previously described 8-kDa histamine release inhibitory factor present in mononuclear cell supernatants.  相似文献   

7.
5'-N-ethylcarboxamideadenosine (NECA) greater than 2-chloroadenosine greater than adenosine greater than N6-(R-phenyl-isopropyl)-adenosine (R-PIA) inhibited in vitro anti-IgE-induced histamine and peptide leukotriene C4 (LTC4) release from human basophils in a concentration-dependent fashion. Micromolar concentrations of adenosine, NECA and R-PIA potentiated the anti-IgE-stimulated release of histamine and LTC4 from human lung parenchymal mast cells. Submillimolar concentrations of adenosine, NECA and R-PIA inhibited in a concentration dependent manner the release of histamine and prostaglandin D2 (PGD2) from skin mast cells challenged with anti-IgE. These results demonstrate marked heterogeneity of the modulatory effect exerted by adenosine on mediator release from human basophils and mast cells.  相似文献   

8.
The activation of human serum complement by incubation with zymosan generates C5a which releases histamine from autologous basophils. The characteristics of the C5a-induced histamine release were investigated. It is similar to IgE-mediated reactions in requiring Ca++ and in being inhibited by EDTA. However, it has marked differences from IgE-mediated reactions. C5a, at all concentrations, released histamine completely in less than 2 min. The C5a reaction has a narrow pH optimum that antigen-induced release and occurs well at 17 degrees to 37 degreesC but not at 0 degreesC. The optimal reaction temperature is 25 degrees to 30 degrees C. Unlike the antigen-induced release, no two-stage activation with C5a for the release of histamine could be demonstrated. There was additive release between C5a- IgE-mediated reactions. Leukocytes could be desensitized to the C5a-mediated reaction by 1) incubating the cells at 37 degrees C for 45 min, 2) pretreating the leukocytes with activated serum in the presence of EDTA, and 3) adding the activated serum to the leukocytes at 0 degrees C before transferring to the optimal reaction temperatures. Cells desensitized to the complement-induced release have normal reactions to IgE-mediated histamine release. In parallel experiments, cells from allergic donors desensitized for IgE-mediated reactions by incubation with antigen under sub-optimal conditions release histamine normally upon the addition of C5a. The results indicate that histamine release by C5a involves a mechanism of basophil activation that is different from the pathway involved in the IgE-induced reaction.  相似文献   

9.
The role of the lytic complement C5b-9 membrane attack complex (MAC) in acute passive transfer experimental autoimmune myasthenia gravis (EAMG) produced in rats was investigated by in vivo inhibition of MAC formation with anti-C6 Fab. Anti-C6 Fab totally inhibited in vitro serum hemolytic activity, but did not consume or inhibit early complement pathways. Injection of rats with 0.12 mg/ml anti-C6 Fab reduced serum C6 to 8% and inhibited the muscle weakness, electrophysiologic abnormalities and loss of acetylcholine receptor (AChR) associated with acute EAMG. This level of C6 inhibition reduced the total serum complement hemolytic activity to 29% of normal but did not reduce the serum levels of complement components C3, C5, or C7. Treatment of rats with lower amounts of anti-C6 Fab (0.08 mg/ml) also inhibited clinical and electrophysiologic signs of EAMG, however, the lower amount of anti-C6 did not prevent the loss of muscle AChR. Both the higher and the lower amount of anti-C6 Fab inhibited the accumulation of macrophages at muscle motor end-plates. The inhibition by anti-C6 indicates that muscle weakness and electrophysiologic abnormalities associated with EAMG are dependent on the complement MAC, and that muscle weakness results from tissue injury in addition to loss of muscle membrane and AChR.  相似文献   

10.
Human lung macrophages obtained from surgical specimens spontaneously secreted a factor(s) (which we term macrophage factor) during 24-hr culture that induced calcium-dependent histamine release from human basophils and lung mast cells. Macrophage factor induced noncytotoxic histamine release from purified (85%) basophils. The kinetics of release were relatively slow and similar to that of anti-IgE. We performed a series of experiments to test the IgE dependence of macrophage factor-induced release. Preincubation of basophils with anti-IgE in calcium-free medium resulted in complete desensitization to macrophage factor-induced histamine release (i.e., when calcium and macrophage factor were added to the basophils, no histamine release occurred), and preincubation with macrophage factor in calcium-free medium resulted in partial desensitization to anti-IgE-induced histamine release. Pretreatment of basophils with pH 3.9 lactic acid buffer, which dissociates basophil IgE from its receptors, markedly reduced the capacity of basophils to release histamine in response to macrophage factor. Basophils that were incubated with IgE myeloma (but not with IgG) after lactic acid treatment partially or completely regained their capacity to release histamine in response to macrophage factor. Fluid-phase IgE myeloma (15 micrograms/ml) (but not IgG) inhibited basophil histamine release induced by two macrophage-derived supernatants, whereas IgE myeloma (200 micrograms/ml) did not inhibit release due to other supernatants. IgE-affinity columns removed the histamine-releasing activity of five macrophage-derived supernatants, and IgG-affinity columns had similar effects. However, neither affinity column removed the histamine-releasing activity of three other macrophage-derived supernatants. On Sephadex G-75 chromatography, nearly all of the histamine-releasing activity migrated as single peak with an apparent m.w. of 18,000. These results suggest that, although macrophage factor are heterogeneous, they are related, as they are a IgE-dependent factors that induce histamine release by interacting with cell surface IgE. These macrophage factors may be responsible for stimulation of basophil/mast cell mediator release in chronic allergic reactions.  相似文献   

11.
FK-506, a macrolide that binds with high affinity to a specific binding protein, and the structurally related macrolide rapamycin (RAP) were compared to cyclosporin A (CsA) for their effects on the release of preformed (histamine) and de novo synthesized (peptide leukotriene C4) inflammatory mediators from human basophils. FK-506 (1 to 300 nM) concentration dependently inhibited histamine release from basophils activated by Der p I Ag, anti-IgE, or compound A23187. FK-506 was more potent than CsA when basophils were challenged with Ag (IC50 = 25.5 +/- 9.5 vs 834.3 +/- 79.8 nM; p less than 0.001), anti-IgE (IC50 = 9.4 +/- 1.7 vs 441.3 +/- 106.7 nM; p less than 0.001), and A23187 (IC50 = 4.1 +/- 0.9 vs 36.7 +/- 3.8 nM; p less than 0.001). The maximal inhibitory effect of FK-506 was higher than that caused by CsA when basophils were activated by Der p I (80.0 +/- 3.6 vs 49.5 +/- 4.7%; p less than 0.001) and anti-IgE (90.4 +/- 1.8 vs 62.3 +/- 2.9%; p less than 0.001). FK-506 had little or no effect on the release of histamine caused by f-met peptide, phorbol myristate (12-tetradecanoyloxy-13-acetoxy-phorbol), and bryostatin 1. RAP (30 to 1000 nM) selectively inhibited only IgE-mediated histamine release from basophils, although it had no effect on mediator release caused by f-met peptide, A23187, 12-tetradecanoyloxy-13-acetoxy-phorbol, and bryostatin 1. FK-506 also inhibited the de novo synthesis of sulfidopeptide leukotriene C4 from basophils challenged with anti-IgE. Low concentrations of FK-506 and CsA synergistically inhibited the release of mediators from basophils induced by anti-IgE or compound A23187. IL-3 (3 and 10 ng/ml), but not IL-1 beta (10 and 100 ng/ml), reversed the inhibitory effect of both FK-506 and CsA on basophils challenged with anti-IgE or A23187. RAP was a competitive antagonist of the inhibitory effect of FK-506 on A23187-induced histamine release from basophils with a dissociation constant of about 30 nM. In contrast, RAP did not modify the inhibitory effect of CsA on A23187-induced histamine release. These data indicate that FK-506 is a potent antiinflammatory agent that acts on human basophils presumably by binding to a receptor site (i.e., FK-506 binding protein).  相似文献   

12.
13.
We have examined the effects of FK-506 and of the struturally related macrolide rapamycin, which bind with high affinity to a specific binding protein (FKBP), to evaluate the involvement of this protein in the release of preformed (histamine) and de novo synthesized inflammatory mediators (sulfidopeptide leukotriene C4 and prostaglandin D2) from mast cells isolated from human lung parenchyma. FK-506 (0.1 to 300 nM) concentration dependently inhibited histamine release from lung parenchymal mast cells activated by anti-IgE. FK-506 was more potent in lung mast cells than in basophils (IC50 = 1.13 +/- 0.46 nM vs 5.28 +/- 0.88 nM; p less than 0.001), whereas the maximal inhibitory effect was higher in basophils than in lung mast cells (88.4 +/- 2.5% vs 76.4 +/- 3.8%; p less than 0.01). FK-506 had little or no inhibitory effect on histamine release from lung mast cells challenged with compound A23187, whereas it completely suppressed A23187-induced histamine release from basophils. FK-506 also inhibited the de novo synthesis of 5-lipoxygenase (sulfidopeptide leukotriene C4) and cyclo-oxygenase (prostaglandin D2) metabolites of arachidonic acid from mast cells challenged with anti-IgE. Unlike in basophils, Il-3 (3 to 30 ng/ml) did not modify anti-IgE- or A23187-induced histamine release from lung mast cells nor did it reverse the inhibitory effect of FK-506. Rapamycin (3 to 300 nM) had little or no effect on the release of histamine from lung mast cells, but it was a competitive antagonist of the inhibitory effect of FK-506 on anti-IgE-induced histamine release from human mast cells with a dissociation constant of about 12 nM. These data indicate that FK-506 is a potent anti-inflammatory agent that acts on human lung mast cells presumably by binding to a receptor site (i.e., FKBP).  相似文献   

14.
The gene product of the steel locus of the mouse represents a growth factor for murine mast cells and a ligand for the c-kit proto-oncogene receptor, a member of the tyrosine kinase receptor class of oncogenes (for review, see O. N. Witte. 1990. Cell 63:5). We have studied the effect of the human recombinant c-kit receptor ligand stem cell factor (rhSCF) on the release of inflammatory mediators from human skin mast cells and peripheral blood basophils and compared its activity to that of rhIL-3, rhSCF (1 ng/ml to 1 microgram/ml) activated the release of histamine and PGD2 from mast cells isolated from human skin. Analysis by digital video microscopy indicated that purified human skin mast cells (84 +/- 5% pure) responded to rhSCF (0.1 to 1 microgram/ml) challenge with a rapid, sustained rise in intracellular Ca2+ levels that was accompanied by secretion of histamine. A brief preincubation (10 min) of mast cells with rhSCF (0.1 pg/ml to 1 ng/ml) significantly enhanced (100 +/- 35%) the release of histamine induced by anti-IgE (3 micrograms/ml), but was much less effective on IgE-mediated release of PGD2. In contrast, a short term incubation with rhSCF did not potentiate the secretion of histamine activated by substance P (5 microM). A 24-h incubation of mast cells with rhSCF did not affect the release of mediators induced by anti-IgE (3 micrograms/ml), probably due to receptor desensitization, rhSCF (1 ng/ml to 3 micrograms/ml) neither caused release of histamine or leukotriene C4 (LTC4) release from leukocytes of 14 donors, nor induced a rise in intracellular Ca2+ levels in purified (greater than 70%) basophils. Brief preincubation (10 min) of leukocytes with rhSCF (1 ng/ml to 3 micrograms/ml) caused an enhancement (69 +/- 11%) of anti-IgE-induced release of histamine that was significant at concentrations as low as 3 ng/ml (p less than 0.05), whereas it appeared less effective in potentiating IgE-mediated LTC4 release. In contrast, a prolonged incubation (24 h) with rhSCF (0.1 pg/ml to 100 ng/ml) did not enhance the release of histamine or LTC4 induced by anti-IgE (0.1 microgram/ml), whereas rhIL-3 (3 ng/ml) significantly potentiated the release of both mediators.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Human neutrophil-derived histamine-releasing activity (HRA-N) was partially purified and found to contain a heat-stable 1400 to 2300-Da fraction which caused human basophils and rat basophil leukemia cells (RBL) to degranulate. The capacity of HRA-N to activate basophils was not related to the gender or atopic status of the basophil donor, but was related to anti-IgE responsiveness. Several lines of evidence suggest that HRA-N and anti-IgE induce histamine release through distinctly different mechanisms: 1) the time course of HRA-N- and anti-IgE-induced RBL histamine release are different; 2) HRA-N causes histamine release from RBL with and without surface-bound IgE; 3) lactic acid stripping of IgE from human basophils reduces anti-IgE-induced histamine release, but has no consistent effect on HRA-N-induced histamine release; and 4) passive sensitization of lactic acid-stripped basophils with IgE restores anti-IgE-induced histamine release but not HRA-N-induced histamine release. Several histamine-releasing factors (HRF) were compared with HRA-N. Human nasal HRF (HRF-NW, crude and partially purified fractions of 15 to 30, 3.5 to 9, and less than 3.5 kDa), like HRA-N, caused equal histamine release from both native and IgE-sensitized RBL. However, only the 15- to 30-kDa fraction caused histamine release from human basophils in the doses tested. Mononuclear cell HRF (HRF-M, crude and a partially purified 25 kDa Mr fraction) and platelet HRF (HRF-P, crude preparation) failed to cause histamine release from either native or IgE-sensitized RBL but caused 30 +/- 5.5% and 20 +/- 10% net histamine release from human basophils, respectively. HRA-N and HRF-NW were both stable to boiling. These data, taken together, suggest that the capacity of HRA-N to induce RBL and human basophil histamine release and of HRF-NW to stimulate RBL histamine release is independent of IgE. The data further suggest that HRA-N and HRF-NW can be distinguished by size, and that they both differ from mononuclear cell HRF and platelet HRF. Thus, it appears that inflammatory cells generate a family of distinct HRF.  相似文献   

16.
Leukocyte complement: a possible role for C5 in lymphocyte stimulation   总被引:3,自引:0,他引:3  
The results presented here show that Fab' antibody fragments directed to complement proteins C5, C6, and C7 inhibit lymphocyte stimulation in mixed lymphocyte culture (MLC) by up to 65%, as determined by decreased incorporation of 3H-thymidine. Lymphocyte stimulation induced by PHA-mitogen was also inhibited up to 100% by anti-C5 Fab'. Specificity of these reactions was established by the findings that goat anti-C5 or murine hybridoma anti-C5 both inhibited MLC; the inhibitory activity of anti-C5 Fab' was absorbed with highly purified C5 (but not with C3), and antibody directed to C3 did not inhibit lymphocyte stimulation by MLC or PHA. The effects of anti-C5 were exerted in a nontoxic manner. Cleavage of lymphocyte associated C5 with factor B (Bb) or with trypsin resulted in stimulation of lymphocyte thymidine incorporation. Purified C5a was found to induce lymphocyte stimulation in serum-free medium in pulse-chase types of experiments. Anti-C6 and C7 Fab' also inhibited lymphocyte stimulation induced in one-way MLC. These results suggest that C5, C5a, and/or C6 and C7 may play a role in triggering of lymphocyte blastogenesis.  相似文献   

17.
Circulating basophils are well established sources of the granule-associated mediator, histamine. The physiological control, however, of histamine release from human basophils is poorly understood. Because histamine may play a role in the transendothelial transport of various compounds, including very low density lipoprotein (VLDL) and its hydrolysis products, we investigated the possibility that VLDL regulates mediator release from basophils. The incubation of VLDL (at physiological concentrations) with basophils (isolated as mixed leukocyte preparations) resulted in a significant release of histamine. Histamine release was dependent on VLDL concentration (half-maximal stimulation occurring at VLDL-protein concentration of 15-20 micrograms/ml), length of incubation (half-maximal release at 5-12 min), temperature (37 degrees C optimum) and required calcium (concentration 0.5-2.0 mM). Furthermore, VLDL-induced histamine release was inhibited by three different mediator-release inhibitors: dimaprit, dibutyryl cAMP and nordihydroguaiaretic acid. Incubation of basophils with LDL or HDL under the same experimental conditions did not result in significant histamine release from basophils. The histamine-secretory response of basophils obtained from different donors varied considerably. Basophils isolated from 28 donors and challenged with 100 micrograms/ml VLDL released 23 +/- 5% of their cellular histamine (mean +/- S.E.; with a range of 0-94%). Desensitization of VLDL-induced histamine release could be accomplished by preincubation of basophils with either VLDL or anti-IgE but not with N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Through the secretion of histamine, a potent vasoactive mediator (and also possibly through granule-associated glycosaminoglycans, stimulants of the enzyme lipoprotein lipase), this novel effect of VLDL may be part of a physiological loop for the regulation of VLDL hydrolysis and lipid transport. This effect of VLDL may also have deleterious consequences, because of the atherogenic properties of histamine.  相似文献   

18.
Human basophils secrete histamine and leukotriene C4 (LTC4) in response to various stimuli, such as Ag and the bacterial product, FMLP. IgE-mediated stimulation also results in IL-4 secretion. However, the mechanisms of these three classes of secretion are unknown in human basophils. The activation of extracellular signal-regulated kinases (ERKs; ERK-1 and ERK-2) during IgE- and FMLP-mediated stimulation of human basophils was examined. Following FMLP stimulation, histamine release preceded phosphorylation of ERKs, whereas phosphorylation of cytosolic phospholipase A2 (cPLA2), and arachidonic acid (AA) and LTC4 release followed phosphorylation of ERKs. The phosphorylation of ERKs was transient, decreasing to baseline levels after 15 min. PD98059 (MEK inhibitor) inhibited the phosphorylation of ERKs and cPLA2 without inhibition of several other tyrosine phosphorylation events, including phosphorylation of p38 MAPK. PD98059 also inhibited LTC4 generation (IC50 = approximately 2 microM), but not histamine release. Stimulation with anti-IgE Ab resulted in the phosphorylation of ERKs, which was kinetically similar to both histamine and LTC4 release and decreased toward resting levels by 30 min. Similar to FMLP, PD98059 inhibited anti-IgE-mediated LTC4 release (IC50, approximately 2 microM), with only a modest effect on histamine release and IL-4 production at higher concentrations. Taken together, these results suggest that ERKs might selectively regulate the pathway leading to LTC4 generation by phosphorylating cPLA2, but not histamine release or IL-4 production, in human basophils.  相似文献   

19.
The release of histamine and other inflammatory mediators from human basophils is triggered by numerous stimuli, including chemical, physical and receptor-mediated activators. Several mechanisms of cell activation including protein kinase C activation have been proposed to operate in these cells. We used phorbol ester and DiC8 to induce histamine release from human basophils and the protein kinase C inhibitors H-7 and H-9 to inhibit this release. Both DiC8 and TPA induced histamine release were inhibited by H-7 (ID 50 = 37 mcM) and H-9 (IC 50 = 20 mcM). However, anti-IgE, fmlp and A23187-induced histamine release were unaffected. In contrast, the calmodulin antagonists W-7 and perphenazine effectively inhibited histamine release by all five stimuli. Therefore, different biochemical pathways appear to be critical for basophil activation depending on the nature of the stimulus used.  相似文献   

20.
We investigated the possible role of calmodulin (CaM) in the control of histamine release from human basophil leukocytes using several CaM antagonists. Trifluoperazine (TFP) (10(-6)-2 X 10(-5) M), pimozide (10(-6)-1.5 X 10(-5) M), chlorpromazine (CPZ) (10(-5)-10(-4) M) and promethazine (PMZ) (2 X 10(-5)-10(-4) M) inhibited in vitro histamine secretion from human basophils induced by several immunological (antigen, anti-IgE, and formyl-L-methionyl-L-leucyl-L-phenylalanine: f-met peptide) and nonimmunological (Ca2+ ionophore A23187 and the tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate: TPA) stimuli. Trifluoperazine sulfoxide (TFP-S) and chlorpromazine sulfoxide (CPZ-S), which have very low affinity to CaM, had practically no inhibitory effect on histamine release from human basophils. The inhibitory effect of TFP could be made irreversible by irradiating the cells with UV light. A sulfonamide derivative, the compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7) (2.5 X 10(-5)-2 X 10(-4) M), which selectively binds to CaM, inhibited the release of histamine from basophils. In contrast, the chloride deficient analogue, W-5, which interacts only weakly with CaM, had practically no inhibiting effect. The IC50 for enzyme release by a series of eight CaM antagonists was closely correlated (r = 0.91; p less than 0.001) with the CaM specific binding, supporting the concept that these agents act by binding to CaM and thereby inhibiting histamine release. TFP and W-7 inhibited histamine release in the absence and in the presence of increasing concentrations of extracellular Ca2+. These results emphasize the possible role of CaM in the control of histamine secretion from human basophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号