首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effect of oligohydramnios on lung growth and biochemical lung development in fetal rabbits, amniotic fluid was drained through a tube inserted into the maternal peritoneal cavity on the 23 day of gestation. Littermate fetuses without an amniotic shunt were used as controls. The fetuses were delivered abdominally on the 28 day of gestation. In a total of 8 pregnant does, 17 fetuses underwent amniotic shunting and 22 fetuses were used as controls. The amniotic shunt produced a significant reduction in the amniotic fluid volume. There were no differences in the wet weights of the fetal body, liver or brain between the two groups. However, the amniotic shunt significantly decreased the wet weight of the fetal lung, fetal lung wet weight/body weight ratio, and protein concentration per lung as compared to the control fetuses. In the fetal liver and brain tissues, no changes were found in the concentrations of total phospholipids, phosphatidylcholine (PC) or disaturated phosphatidylcholine (DSPC, the main component of lung surfactant) per g of wet tissue and per mg of protein. However, the lungs of the fetuses with amniotic shunts contained significantly more PC and DSPC, and the L/S ratio was higher than in the control fetuses. These results suggest that the oligohydramnios produced by an amniotic shunt causes pulmonary hypoplasia, but raises the pulmonary surfactant content of fetal rabbit lung.  相似文献   

2.
Reduced amniotic fluid volume often results in fetal lung hypoplasia. Our aim was to examine the effects of prolonged drainage of amniotic and allantoic fluids on lung liquid volume (Vl), secretion rate (Vs), and tracheal flow rate (Vtr) in fetal sheep. In five experimental animals, amniotic and allantoic fluids were drained from 107 to 135 days of gestation. The volume of fluid drained from the experimental animals was 411.8 +/- 24.4 ml/day (n = 140). In six control animals, amniotic fluid volume was 747.7 +/- 89.7 ml (n = 15). Wet and dry lung weights were 20-25% lower in experimental fetuses than in control fetuses. Fetal hemoglobin, O2 saturation, arterial PO2, pH, and hematocrit were unchanged by drainage. During the drainage period, Vl was up to 65% lower, Vs was up to 35% lower, and Vtr was up to 40% lower in experimental fetuses than in control fetuses. We conclude that prolonged drainage of amniotic and allantoic fluids decreases Vl, Vs, and Vtr in fetal sheep. These findings indicate that fetal lung hypoplasia associated with oligohydramnios may be the result of a prolonged reduction in Vl.  相似文献   

3.
Oligohydramnios commonly leads to fetal lung hypoplasia, but the mechanisms are not fully understood. Our aim was to determine, in fetal sheep, the effects of prolonged oligohydramnios on the incidence and amplitude of tracheal pressure fluctuations associated with fetal breathing movements (FBM), on tracheal flow rate during periods of FBM (VtrFBM) and periods of apnea (Vtrapnea), on tracheal pressure relative to amniotic sac pressure, and on amniotic sac pressure relative to atmospheric pressure. In five sheep, oligohydramnios was induced by draining amniotic and allantoic fluids from 107 to 135 days of gestation (411.8 +/- 24.4 ml/day), resulting in fetal lung hypoplasia. In five control sheep, amniotic fluid volume was 732.3 +/- 94.4 ml. Oligohydramnios increased the incidence of FBM by 14% at 120 and 125 days and the amplitude of FBM by 30-34% at 120-130 days compared with controls. From 120 days onward, VtrFBM was 35-55% lower in experimental fetuses than in controls. Influx of lung liquid during FBM was 87% lower in experimental fetuses than in controls. Vtrapnea, tracheal pressure, and amniotic sac pressure were not significantly altered by oligohydramnios. Our tracheal flow rate data suggest that transient changes in lung liquid volume during periods of FBM and periods of apnea were diminished by oligohydramnios. We conclude that the primary factor in the etiology of oligohydramnios-induced lung hypoplasia is not an inhibition of FBM (as measured by tracheal pressure fluctuations) or a reduction in amniotic fluid pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Pulmonary hypoplasia in chondrodystrophic mice   总被引:1,自引:0,他引:1  
Lungs of day-18 fetal mice with hereditary chondrodysplasia (cho) were examined histologically and biochemically for pulmonary hypoplasia. Compared with normal littermate controls, the mutant's lungs were smaller by 37 (wet weight) and 22% (dry weight). Total DNA and protein per whole lung were decreased by 13 and 19%, respectively. The significantly smaller-than-normal terminal sacs observed in histological sections of the mutant's lungs corresponded with the greater difference (37%) in lung wet weight. The developmental mechanism for this disorder was further explored by examining the volumes of thoracic cavity and amniotic fluid. The volume of the thoracic cavity of newborn mutants was less than half that of controls, suggesting that the pathogenetic mechanism for the hypoplastic lungs in chondrodysplastic mice includes thoracic dystrophy. Measurement of the amniotic fluid volume revealed polyhydramnios in the mutant, thereby ruling out oligohydramnios as a mechanism. The relevance of this study to human pulmonary hypoplasia in short-limb chondrodystrophy is discussed.  相似文献   

5.
Prolonged oligohydramnios, or a lack of amniotic fluid, is associated with pulmonary hypoplasia and subsequent perinatal morbidity, but it is unclear whether short-term or acute oligohydramnios has any effect on the fetal respiratory system. To investigate the acute effects of removal of amniotic fluid, we studied nine chronically catheterized fetal sheep at 122-127 days gestation. During a control period, we measured the volume of fluid in the fetal potential airways and air spaces (VL), production rate of that fluid, incidence and amplitude of fetal breathing movements, tracheal pressures, and fetal plasma concentrations of cortisol, epinephrine, and norepinephrine. We then drained the amniotic fluid for a short period of time [24-48 h, 30.0 +/- 4.0 (SE) h] and repeated the above measurements. The volume of fluid drained for the initial studies was 1,004 +/- 236 ml. Acute oligohydramnios decreased VL from 35.4 +/- 2.9 ml/kg during control to 22.0 +/- 1.6 after oligohydramnios (P less than 0.004). Acute oligohydramnios did not affect the fetal lung fluid production rate, fetal breathing movements, or any of the other measured variables. Seven repeat studies were performed in six of the fetuses after reaccumulation of the amniotic fluid at 130-138 days, and in four of these studies the lung volume also decreased, although the overall mean for the repeat studies was not significantly different (27.0 +/- 5.2 ml/kg for control vs. 25.5 +/- 5.5 ml/kg for oligohydramnios). Again, none of the other measured variables were altered by oligohydramnios in the repeat studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Clinical and laboratory observations show that denial of free communication between the amniotic fluid and lung fluid results in pulmonary hypoplasia. Thus, cleft palate resulting from tongue obstruction to palatal shelf elevation might be associated with disturbed lung development. This association exists in the Pena-Shokeir phenotype. The goal of these experiments was to see what effect bromodeoxyuridine (BUdR)-induced cleft palate had on lung development. LACA mice were injected with 500 mg/kg BUdR on E11 or E11 and E12 of gestation, a treatment known to produce a 25% and 50% incidence of cleft palate, respectively. BUdR had a direct retarding effect on lung growth but, when cleft palate occurred as well, the lungs were more severely affected. Morphometry showed that lungs from fetuses with cleft palate had only one-half the saccular volume of controls or of treated fetuses with normal palates. Although hypoplastic, lungs associated with cleft palate had type I and type II pneumocytes, and the latter were shown by electron microscopy to be capable of producing surfactant. Hence, cellular differentiation had not been affected by the treatment. Fetuses with cleft palate had less amniotic fluid than controls but significantly more than those with normal palates after treatment. Thus, the pattern of abnormalities in this animal model bears some resemblance to that of the human Pena-Shokeir phenotype.  相似文献   

7.
Arginine-vasopressin (AVP) and oxytocin are neuropeptides that are not only released as hormones into the peripheral circulation, but are also involved in central processes, e.g., in brain development. Earlier experiments suggested an inverse relationship between amniotic AVP and fetal growth. To see whether increased peptide levels reflect fetal growth retardation, and to determine cause and effect of this relationship, AVP and oxytocin content were determined in amniotic fluid of growth-retarded fetuses by radioimmunoassay. Growth retardation was established either by intraperitoneal administration of methylazoxymethanol to the mother, or by undernourishment of the mother. Elevated amniotic AVP levels were found in the methylazoxymethanol-treated and undernourished rats, partly concomitant with smaller amount of amniotic fluid. Amniotic AVP levels were inversely related to fetal body weight, while a similar trend was found for fetal brain weight. In addition, a positive correlation was found between fetal body weight and amniotic oxytocin in control rats.  相似文献   

8.
Pulmonary hypoplasia is increasing as a cause of neonatal death. To understand the pathophysiology of pulmonary hypoplasia, the physiology of fetal lung growth must first be understood. Lung fluid production and fetal breathing are primary factors regulating lung growth. Interruption of pulmonary arterial flow also decreases fetal lung growth. To define the relationship of pulmonary arterial flow to other factors known to be important for fetal lung growth, breathing and lung fluid production were measured after postductal main pulmonary artery (MPA) ligation in fetal sheep. Surgical preparation at 107-116 d gestation included placement of vascular catheters and a tracheal catheter connected to an intrauterine collection bag for lung fluid. Five fetuses served as monitored controls (catheters only), 3 as sham operated controls (catheters and thoracotomy), and 7 had MPA ligation. MPA ligation significantly decreased lung weights at 131-140 d; mean dry weight (g): MPA ligation--6.7, sham--23.4, monitored--22.3. Mean rates of lung fluid production (mL/h) were also decreased (d gestation): 116-122 d: MPA ligation--2.2, sham--9.1, monitored--6.8; 123-129 d: MPA ligation--2.1, sham--9.1, monitored--6.2; 130-136 d: MPA ligation--1.5, sham--12.4, monitored--7.7. There were no differences between MPA ligated, sham, and monitored fetuses in the incidence or intensity of fetal breathing movements. Decreased lung fluid production after main pulmonary artery ligation is most likely due to decreased secretion of lung fluid. Pulmonary arterial flow in other models of pulmonary hypoplasia which decrease lung fluid production (i.e., oligohydramnios) should also be examined.  相似文献   

9.
Seven singleton 120-day fetal lambs were prepared with a shunt from the lung to the gastric end of the esophagus, a bladder catheter, and multiple amniotic fluid and vascular catheters. The urachus was ligated. Beginning 7 days later, amniotic fluid volumes were determined by drainage, followed by replacement with 1 liter of lactated Ringer (LR) solution. Urine flow into the amnion was measured continuously. In 14 of 27 experiments, amniotic fluid volumes were determined again 2 days after the inflow into the amnion had consisted of urine only and in 13 experiments after the inflow of urine had been supplemented by an intraamniotic infusion of LR solution. Intramembranous absorption was calculated from the inflows and the changes in volume between the beginning and end of each experiment. The relations between absorption rate and amniotic fluid volume, the "function curves," were highly individual. Urine production during the infusion of LR solution did not decrease, fetal plasma renin activity decreased (P < 0.001), and amniotic fluid volume increased by 140% [SE (27%), P < 0.005], but the increase in the amniochorionic absorption rate of 411% [SE (48%), P < 0.001] was greater (P < 0.005) than the increase in volume. Each of the seven fetuses was proven capable of an average intramembranous absorption rate that exceeded 4.5 liters of amniotic fluid per day. During the infusion of LR solution, the increase in the rate of absorption matched the rate of infusion (both in ml/h), with a regression coefficient of 0.75 (P < 0.001). Thus, even for large amniotic fluid volumes, volume is not limited by the absorptive capacity of the amniochorion, and, at least in these preparations, the position of the function curve and not the natural rate of inflow was the major determinant of resting amniotic fluid volume.  相似文献   

10.
The effects of fetal tracheostomy on lung development in lambs have been investigated. Seven ewes, all with twin fetuses, were given a general anesthetic. One fetus in each set of twins was tracheostomized and the other fetus was sham operated (117-122 days gestation). The fetuses were delivered by cesarean section between 137 and 140 days gestation. Fetal tracheostomy decreased lung weight and volume, altered DNA concentration and the structural development of the acinus, and decreased lung distensibility. However, tissue and airway saturated phosphatidylcholine and lung stability during deflation were not significantly affected by fetal tracheostomy. It seems that tracheostomy in fetal lambs alters lung growth but does not affect the formation or release of surfactant. These data support the hypothesis that lung volume is actively maintained and lung growth promoted by the secretion of lung fluid against the resistance of the upper airway in fetal lambs.  相似文献   

11.
Prenatal ethanol exposure increases collagen deposition and alters surfactant protein (SP) expression and immune status in lungs of near-term fetal sheep. Our objectives were to determine 1) whether these prenatal effects of repeated gestational ethanol exposure persist after birth and 2) whether surfactant phospholipid composition is altered following prenatal ethanol exposure. Pregnant ewes were chronically catheterized at 90 days of gestational age (DGA) and given a 1-h daily infusion of ethanol (0.75 g/kg, n = 9) or saline (n = 7) from 95 to 135 DGA; ethanol administration ceased after 135 DGA. Lambs were born naturally at full term (146 ± 0.5 DGA). Lung tissue was examined at 9 wk postnatal age for alterations in structure, SP expression, and inflammation; bronchoalveolar lavage fluid was examined for alterations in surfactant phospholipid composition. At 134 DGA, surfactant phospholipid concentration in amniotic fluid was significantly reduced (P < 0.05) by ethanol exposure, and the composition was altered. In postnatal lambs, there were no significant differences between treatment groups in birth weight, postnatal growth, blood gas parameters, and lung weight, volume, tissue fraction, mean linear intercept, collagen content, proinflammatory cytokine gene expression, and bronchoalveolar lavage fluid surfactant phospholipid composition. Although SP-A, SP-B, and SP-C mRNA levels were not significantly different between treatment groups, SP-D mRNA levels were significantly greater (P < 0.05) in ethanol-treated animals; as SP-D has immunomodulatory roles, innate immunity may be altered. The adverse effects of daily ethanol exposure during late gestation on the fetal lung do not persist to 2 mo after birth, indicating that the developing lung is capable of repair.  相似文献   

12.
Changes in lung liquid dynamics induced by prolonged fetal hypoxemia   总被引:1,自引:0,他引:1  
Our aim was to determine the effect of prolonged fetal hypoxemia, induced by reduced maternal uterine blood flow (RUBF), on fetal lung liquid secretion, flow, and volume. In chronically catheterized fetal sheep, lung liquid volume (VL) and the secretion rate of lung liquid (Vs) were measured before and after a 24-h period of either RUBF or normoxemia. Tracheal fluid flow and the incidence of fetal breathing movements (FBM) were measured before, during, and after the 24-h period. In normoxic control fetuses Vs was not significantly altered. After 24 h of RUBF, Vs was significantly (P less than 0.005) reduced compared with pre-RUBF values. During 24 h of RUBF the incidence of FBM declined initially but returned to control values after 12-16 h. In seven of eight fetuses, over the 12- to 24-h period of RUBF, large amounts of liquid (22.7-62.6 ml) were drawn into the lungs during FBM, resulting in a net movement of amniotic fluid into the lungs. During the 18- to 24-h period of RUBF, changes in the incidence of FBM were found to be significantly and positively correlated (r = 0.86, P less than 0.005) with the changes in VL that occurred over the 24-h period. Thus, prolonged RUBF can result in the inhalation of large volumes of amniotic fluid by the fetus, which could be a cause of in utero meconium aspiration.  相似文献   

13.
The origin and fate of hyaluronan in amniotic fluid   总被引:1,自引:0,他引:1  
The mechanisms which regulate the steady-state concentration and molecular weight of hyaluronan in the amniotic fluid of sheep at different gestational ages have been investigated. An attempt to trace the origin of the polysaccharide has been made by analyses of various fetal fluids (amniotic fluid, allantoic fluid, tracheal fluid, urine, and serum). The fate has been studied by injection of radioactively labelled hyaluronan into the amniotic cavity and following the tracer in fetal tissues and fluids. The concentration of hyaluronan in amniotic fluid varies considerably but is in the order of 5 mg/l at mid-pregnancy and decreases to 1 mg/l in late pregnancy. The polysaccharide has a Mr-distribution with a weight-average in the order of 10(6) at 10 to 13 weeks of gestation which decreases to 10(5) closer to term. Calculations show that urine contributes 0.1 and 0.5 mg of low-molecular (Mr = 10(4) hyaluronan per day in mid- and late pregnancy, respectively, and the lung 10-20% of that amount in the form of high-molecular weight polymer (Mr greater than 10(6). The hyaluronan disappears from the amniotic cavity by bulk flow due to fetal swallowing. It is taken up and degraded in the fetal intestine. Molecules of Mr = 10(3) can pass the intestinal barrier. Calculations show that about 0.5 mg and 1.0 mg of hyaluronan is eliminated per day from the amniotic fluid at 12 and 17 weeks of gestation, respectively. Thus, the higher rate of elimination and the relatively high urinary contribution in more mature fetuses explain the low concentration and Mr of amniotic hyaluronan in late gestation, whereas a slower elimination combined with a relatively larger contribution of high molecular weight hyaluronan both from lung and urine and possibly from other sources are responsible for the higher concentration and Mr of the compound in early pregnancy.  相似文献   

14.
Maternal administration of DDAVP induces maternal and fetal plasma hyponatremia, accentuates fetal urine flow, and increases amniotic fluid volume. Fetal hemorrhage represents an acute stress that results in fetal AVP secretion and reduced urine flow rate. In view of the potential therapeutic use of DDAVP for pregnancies with reduced amniotic fluid volume, we sought to examine the impact of maternal hypotonicity during acute fetal hemorrhage. Chronically catheterized pregnant ewes (130 +/- 2 days) were allocated to control or to DDAVP-induced hyponatremia groups. In the latter group, tap water (2,000 ml) was administered intragastrically to the ewe followed by DDAVP (20 microg bolus, 4 microg/h) and a maintenance intravenous infusion of 5% dextrose water for 4 h to achieve maternal hyponatremia of 10-12 meq/l. Thereafter, ovine fetuses from both groups were continuously hemorrhaged to 30% of estimated blood volume over a 60-min period. DDAVP caused similar degree of reductions in plasma sodium and osmolality in pregnant ewes and their fetuses. In response to hemorrhage, DDAVP fetuses showed greater reduction in hematocrit than control fetuses (14 vs. 10%). Both groups of fetuses demonstrated similar increases in plasma AVP concentration. However, the AVP-hemorrhage threshold was greater in DDAVP fetuses (22.5%) than in control (17.5%). Hemorrhage had no significant impact on plasma osmolality, electrolyte levels, or cardiovascular responses in either group of fetuses. Despite similar increases in plasma AVP, DDAVP fetuses preserved fetal urine flow rates, with values threefold those of control fetuses. These results suggest that under conditions of acute fetal stress of hemorrhage, maternal DDAVP may preserve fetal urine flow and amniotic fluid volume.  相似文献   

15.
Maternal dehydration consistent with mild water deprivation or moderate exercise results in maternal and fetal plasma hyperosmolality and increased plasma arginine vasopressin (AVP). Previous studies have demonstrated a reduction in fetal urine and lung fluid production in response to maternal dehydration or exogenous fetal AVP. As fetal urine and perhaps lung liquid combine to produce amniotic fluid, maternal dehydration may affect the amniotic fluid volume and/or composition. In the present study, six chronically-prepared pregnant ewes with singleton fetuses (128 +/- 1 day) were water deprived for 54 h to determine the effect on amniotic fluid. Maternal plasma osmolality (306.5 +/- 0.9 to 315.6 +/- 1.9 mOsm/kg) and AVP (1.9 +/- 0.2 to 22.2 +/- 3.2 pg/ml) significantly increased during dehydration. Similarly, fetal plasma osmolality (300.0 +/- 0.9 to 312.7 +/- 1.7 mOsm/kg) and AVP (1.4 +/- 0.1 to 10.4 +/- 2.4 pg/ml) increased in parallel to maternal values. Amniotic fluid osmolality (276.8 +/- 5.7 to 311.6 +/- 6.5 mOsm/kg) and sodium (139.8 +/- 4.8 to 154.0 +/- 5.4 mEq/l) and potassium (9.1 +/- 1.3 to 13.9 +/- 2.4 mEq/l) concentrations increased while a significant (35%) reduction in amniotic fluid volume occurred (871 +/- 106 to 520 +/- 107 ml). These results indicate that maternal dehydration may have marked effects on maternal-fetal-amniotic fluid dynamics, possibly contributing to the development of oligohydramnios.  相似文献   

16.
The transverse growth of long bones during intrauterine development was studied in rat fetuses subjected to experimental oligohydramnios in order to determine whether the skeletal changes, if any, in extrinsic fetal akinesia were similar to those observed in curarized rat fetuses with the fetal akinesia deformation sequence. Oligohydramnios was induced by daily extraction of amniotic fluid from day 17 of gestation until term. Experimental fetuses were compared with a sham-operated control group. The total area and perimeter, the absolute and relative amount of periosteum and bone trabeculae, the major and minor axes, and the elongation factor were measured in histological cross sections of the femoral metaphysis and diaphysis with an IBAS 1 image analysis system. Rat fetuses in the experimental group showed multiple articular contractures, redundant skin, and lung hypoplasia, a phenotype consistent with the oligohydramnios sequence. No alterations in femoral shape and transverse growth of the metaphysis and diaphysis were noted in these fetuses. These results suggest that the main mechanical factor related to fetal bone modeling is muscular strength, while motion would be mainly involved in fetal joint development.  相似文献   

17.
Prenatal tracheal occlusion (TO) consistently accelerates lung growth in the sheep model of congenital diaphragmatic hernia (CDH). However, significant variability in lung growth has been observed in early clinical trials of TO. We hypothesized that lung hypoplasia created at relatively late stages of lung development may not be equivalent to human CDH-induced lung hypoplasia, which begins early in gestation. To test this hypothesis, we performed TO in the rat model of nitrofen-induced CDH. Left-sided CDH was induced by administering 100 mg of nitrofen to timed pregnant rats on day 9 of gestation. On day 19 of gestation, four to five fetuses per dam underwent surgical ligation of the trachea. At death (day 21.5), lungs from non-CDH (non-CDH group), left-CDH (CDH group), and trachea-occluded left-CDH fetuses (CDH-TO group) were harvested and compared by weight, DNA and protein content, and stereological morphometry. Wet and dry lung weight-to-body weight ratio, total lung DNA and protein contents, the volume of lung parenchyma, and the total saccular surface area of the CDH-TO group were significantly increased relative to the CDH group and were either greater than or comparable to the non-CDH controls. We conclude that TO accelerates lung growth and increases lung parenchyma in an early-onset model of CDH-induced lung hypoplasia.  相似文献   

18.
Swallowing of amniotic fluid and lung fluid inflow were eliminated in 10 chronically instrumented fetuses. The urachus was ligated, and fetal was urine drained to the outside. At the beginning and the end of 21 experiments of 66 +/- 5 (SE) h duration, all amniotic fluid was temporarily drained to the outside for volume measurement and sampling. Amniotic fluid osmolalities and oncotic pressures were experimentally controlled. Amniochorionic absorption of amniotic fluid depended strongly on the osmolality difference between amniotic fluid and fetal plasma (P < 0.001), but at zero osmolality difference there still was a mean absorption rate of 23.8 +/- 4.7 (SE) ml/h (P < 0.001). Absorption was unaffected by the protein concentration difference between amniotic fluid and fetal plasma, but infused bovine albumin in the amniotic fluid was absorbed at a rate of 1.8 8 +/- 0.4 g/h (P < 0.001), corresponding to a volume flow of fluid of 33.8 8 +/- 6.1 ml/h (P < 0.001). Fluid absorption in the amniochorion is driven in part by crystalloid osmotic pressure, but about 25 ml/h is absorbed by a path that is permeable to protein. That path has the physiological characteristics of lymphatic drainage, although no anatomic basis is known to exist for a lymphatic system in the amniochorion.  相似文献   

19.
Amniotic and allantoic fluid volumes and composition change dynamically throughout gestation. Cattle that are pregnant with somatic cell nuclear transfer (NT) fetuses show a high incidence of abnormal fluid accumulation (particularly hydrallantois) and fetal mortality from approximately midgestation. To investigate fetal fluid homeostasis in these pregnancies, Na, K, Cl, urea, creatinine, Ca, Mg, total PO(4), glucose, fructose, lactate, total protein, and osmolalities were measured in amniotic and allantoic fluids collected at Days 50, 100, and 150 of gestation from NT pregnancies and those generated by the transfer of in vitro-produced embryos or by artificial insemination. Deviations in fetal fluid composition between NT and control pregnancies were apparent after placental and fetal organ development, even when no gross morphological abnormalities were observed. Individual NT fetuses were affected to varying degrees. Elevated allantoic Na was associated with lower K and increased allantoic fluid volume or edema of the fetal membranes. Total PO(4) levels in NT allantoic and amniotic fluid were elevated at Days 100 and 150. This was not accompanied by hypophosphatemia at Day 150, suggesting that PO(4) acquisition by NT fetuses was adequate but that its readsorption by the kidneys may be impaired. Excessive NT placental weight was associated with low allantoic glucose and fructose as well as high lactate levels. However, the fructogenic ability of the NT placenta appeared to be normal. The osmolality of the fetal fluids was maintained within a narrow range, suggesting that the regulation of fluid composition, but not osmolality, was impaired in NT pregnancies.  相似文献   

20.
The effects of reduced maternal placental blood flow on the growth and development of the fetal guinea pig have been studied by unilateral ligation of the uterine artery at day 30 of pregnancy. Fetal guinea pigs were investigated about 20 or 30 days later. In about one-third of cases fetal death occurred, in another third fetuses less than 60% of normal weight were observed and in the remainder all fetuses were in the normal weight range. In the growth retarded fetuses prenatal growth occurred at about 50% of the rate in control. There was no postnatal 'catch up' as growth still remained lower than in controls. Restricted fetal growth affected particularly development of the visceral tissues in which case size declined in proportion to body weight. Brain and adrenal by comparison were less affected as their contribution to total body weight increased, but even so in the severely retarded fetuses the mass of both fell. The responses of the liver were in general consistent with a delay in the pattern of development. Thus DNA, RNA, protein and haematopoietic cell content changes occurred later than normal. In contrast an enhanced deposition of glycogen was apparent in the liver of the growth-retarded fetus. The results indicate some of the ways in which nutritional deprivation of the fetuses leads to reprogramming of growth and maturation of selected fetal tissues to allow non-essential changes to await more favourable times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号