首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Klaus Schmitz 《Planta》1970,91(2):96-110
Summary When D-Glucose-6-T is applied to small areas of the leaf blade of Cucumis or Cucurbita, a translocation of labelled material within the veins and the petiole down to the internodes of the axis can be demonstrated by chemical methods and by histoautoradiography. The translocated material was identified by thin layer and paper chromatography as stachyose, raffinose, and sucrose. A dry mounting autoradiographic technique was elaborated which prevented any secondary diffusion of water soluble substances. In autoradiograms of longitudinal and cross sections of veins, petioles and internodes, tritium can be localized within single sieve tubes of exporting bundles. Usually the centre of activity corresponds to the cytoplasmic material or the slime-plugs and to the sieve plates. Since sucrose, stachyose and raffinose are the main labelled translocated substances in these experiments, there is little doubt that with certain precautions such autoradiograms may present a real picture of the long-distance translocation of assimilates.

Teil einer Dissertation unter der wissenschaftlichen Leitung von Prof. Dr.J. Willenbrink.  相似文献   

2.
Summary Auxin activity was detected in honeydew obtained from the aphid Tuberolachnus salignus (Gmelin) feeding on willow (Salix viminalis). Active uptake of 14C-indolyl-3-acetic acid (IAA) into the sieve tubes was demonstrated by irrigating the cambial surface of willow bark with 14C-IAA solution and assaying aphid stylet exudate. When, however, 14C-IAA was applied to the peridermal tissues of the bark or to a mature leaf most of the radioactivity (collected in honeydew or stylet exudate) co-chromatographed with indolyl-3-acetyl-aspartic acid (IAAsp). The presence of IAAsp in honeydew was not affected by extraction procedure or by aphid metabolism. Honeydew obtained from willow treated with 14C-tryptophan contained only 14C-tryptophan. When 14C-IAA was applied in agar to the cut end of willow segments the radioactivity was found to move in a basipetally polar manner. The direction of movement of radioactivity in the sieve tubes, however, was found to be influenced by the proximity of the roots. Nevertheless, there was evidence that endogenous auxin in the sieve tubes does move in a predominantly basipetal direction.  相似文献   

3.
Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the transport region always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.  相似文献   

4.
The distribution of 14C from xylem-borne [14C]glutamine, the major nitrogen compound moving in xylem sap of cottonwood (Populus deltoides Bartr. ex Marsh), was followed in rapidly growing shoots with a combination of autoradiographic, microautoradiographic, and radioassay techniques. Autoradiography and 14C analyses of tissues showed that xylem-borne glutamine did not move with the transpiration stream into mature leaves. Instead, most of it was transferred from xylem to phloem in the upper stem and then translocated to young developing tissues. Microautoradiography showed that metaxylem parenchyma, secondary xylem parenchyma, and rays were the major areas of uptake from xylem vessels in the stem. Accumulation in phloem (high 14C concentrations in sieve tubes) took place in internodes subtending recently mature leaves. Little 14C from xylem-borne glutamine was found in phloem of mature leaves, which indicates restricted retransport of glutamine that did enter the leaf. In the primary tissues of the upper stem, most 14C was found in the phloem. Cottonwood stems have an efficient uptake and transfer system that enhances glutamine movement to developing tissues of the upper stem.  相似文献   

5.
Klaus Schmitz 《Planta》1970,92(3):208-221
Summary The petiole of Pelargonium zonale is traversed by 17 bundles, whose arrangement and form are typical for this plant. The bundles of the petiole are connected with the conducting system of the axis and with the main nerves by a system of phloem anastomoses in the leaf base and in the junction between the petiole and the leaf blade (Fig. 2). The anatomical findings were confirmed and extended by a study of the translocation of K-fluorescein and 14C. It could be shown that the metaphloem of the central petiole bundle is composed of phloem subunits, each of which is connected with the phloem of one certain main nerve only (Fig. 4). Accordingly, if fluorescein or 14CO2 is applied to one main nerve, the dye or 14C-material is translocated exclusively in a small phloem area of the central bundle. Autoradiograms of the petioles indicate that the 14C-labelled assimilates (sucrose, glucose, fructose and amino acids) are translocated exclusively in the phloem. A lateral movement of the labelled material within the petiole was not observed. The metaphloem of the central petiole bundle of Pelargonium zonale revealed a functional organization of phloem subunits.

Teil einer Dissertation unter der wissenschaftlichen Leitung von Prof. Dr. J. Willenbrink.  相似文献   

6.
The kinetic behavior of translocation profiles indicates that their shape is determined largely by the rate at which tracer enters the sieve tubes in the source leaf. Confirmation of this relationship was sought by investigating the kinetics of 14C in the immediate source pool for translocated sucrose in soybean (Glycine max L., cv. Bragg) and morning glory (Ipomea nil Roth, cv. Scarlet O'Hara) leaves. Quantitative microautoradiography was used to follow the water-soluble 14C contents of the companion cells in minor veins after pulse-labeling with 14CO2. In both morning glory and soybean, the observed kinetics in the companion cells matched reasonably well those expected from the shape of the translocation profiles.

Marked compartmentation of sucrose was evident in soybean leaves in that the specific radioactivity of total leaf sucrose was greatest immediately after labeling and quickly declined, whereas labeling in the companion cells was low at first and did not reach a maximum for about 35 minutes. In morning glory leaves, the kinetics of sucrose specific radioactivity and of companion cell-labeling more closely paralleled one another.

  相似文献   

7.
Summary The decomposition of peptone and the associated species numbers and individual counts of ciliates has been investigated in flowing (current speed 40 cm/sec) and stagnant model ecosystems. In order to imitate the ecological conditions in natural waters receiving sewage small quantities of peptone were added at regular intervals.The most important environmental factors such as pH, dissolved oxygen, NH4 +-, NO3 --levels, and the organisms occurring in the free water as well as in the periphyton community on microscopic slides, were investigated for three weeks. Both the population dynamics of organisms and the environmental conditions within the ecosystems are figured (Figs. 1–6).The ecosystem with flowing water, and the aerated stagnant model showed high contents of O2 and fast mineralisation of peptone up to the NO3 --level. The unaerated model showed a retarded decomposition of peptone and accumulation of ammonia.The unaerated stagnant ecosystem showed the highest individual counts of bacteria and ciliates, while in the flowing model a limited number of organisms only was found.Most of the differences between flowing and stagnant waters are due to the varying O2-level. Only two species were directly inhibited by the current speed tested in these experiments.

Zoologisches Institut der Universität Bonn Hydrobiologische Arbeitsgruppe (Leiter: Prof. Dr. H. Bick)

Mit Untersützung der Weltgesundheitsorganisation.

Herrn Prof. Dr. Rolf Danneel zum 70. Geburtstag gewidmet.

Anschrift der Verfasser: PProf. Dr. H. Bick und Diol. Biol. W. Schmerenbeck, Hydrobiologische Arbeitsgruppe am Zoologischen Institut der Universität, D05300 Bonn 1, Poppelsdorfer Schlo\.  相似文献   

8.
Pruned source-sink transport systems from predarkened plants of Amaranthus caudatus L. and Gomphrena globosa L. were used to study the localization of 14C-labeled photosynthate imported into experimentally induced sink leaves by microautoradiography. During a 6-h (Amaranthus) or a 4-h (Gomphrena) transport period, 14C-assimilates were translocated acropetally from a mature source leaf provided with 14CO2, into a younger induced sink leaf (dark/-CO2). In addition, a young still-expanding source leaf exposed to 14CO2 exported 14C-assimilates basipetally into a mature induced sink leaf (dark/-CO2). Microautoradiographs showed that imported 14C-photosynthate was strongly accumulated in the sieve element/companion cell complexes of midveins, secondary veins, and minor veins of both the mature and the expanding sink leaf. Some label was also present in the vascular parenchyma and bundlesheath cells. In petioles, 14C-label was concentrated in the sieve element/companion cell complexes of all bundles indicating that assimilates were imported and distributed via the phloem. Moreover, a considerable amount of radioactivity unloaded from the sieve element/companion cell complexes of petiolar bundles, was densely located at sites of secondary wall thickenings of differen-tiating metaxylem vessels, and at sites of chloroplasts of the vascular parenchyma and bundle-sheath cells. These observations were more striking in petioles of Gomphrena than Amaranthus.Abbreviation se/cc sieve element/companion cell  相似文献   

9.
Uptake and translocation of paclobutrazol by shoots of M.26 apple rootstock   总被引:1,自引:0,他引:1  
When 14C-paclobutrazol, a gibberellin synthesis inhibitor, was applied to different parts of actively-growing M.26 apple rootstock shoots it was translocated acropetally when applied to the young stem and, to a lesser extent, from the youngest unrolled leaf. Paclobutrazol was not translocated out of leaf laminae, shoot tips or from one-year-old wood but translocation occurred out of a treated petiole into the attached leaf. No basipetal translocation was detected. This translocation pattern suggested movement through the xylem.Localised application of paclobutrazol caused a reduction in shoot extension and leaf production when the young stem or shoot tip were treated; the effect decreased as older parts of the stem were treated. Treatment of laminae or petioles had only a slight effect on shoot extension and treatment of one-year-old wood was ineffective. Combined treatment of the shoot tip plus young stem was similar in effect to treatment of the complete shoot.It is suggested that paclobutrazol exerts its effects on shoot growth by inhibiting gibberellin biosynthesis in the shoot tip and the expanding leaves.The findings contribute to an understanding of the requirements for efficient orchard application of foliar sprays of paclobutrazol.  相似文献   

10.
Zusammenfassung Die verdickten (nacré) inneren Wände der Siebröhren von Annonaceen, vonMyristica, Illicium undKadsura geben mit spezifischen Farbstoffen eine positive Cellulosereaktion. Untersuchungen über ihre Feinstruktur zeigen, daß sie sich aus bevorzugt parallel verlaufenden Fibrillen (Durchmesser 100–200 Å) zusammensetzen. Die Paralleltextur ist wahrscheinlich für den Perlmutterglanz der Wände mitverantwortlich. Die Wandverdickungen entstehen bereits in sehr jungen plasmareichen Siebröhren und engen das Siebröhrenlumen im Laufe ihrer Differenzierung bis auf weniger als die Hälfte des Ausgangswertes ein. - Die Siebröhren-Plastiden von Annonaceen undMyristica enthalten einen Proteineinschluß, z. T. zusätzlich auch Stärkekörner.
On the fine structure of nacreous walls and of plastids in the sieve tubes ofAnnona andMyristica
Summary Wall thickenings (nacreous walls) in sieve tubes ofAnnonaceae, ofMyristica, Illicium, andKadsura give positive reactions with dyes staining cellulose walls. In electron microscopic investigations their composition of 100–200 Å wide fibrils can be depicted. The predominant parallel arrangement of the fibrils is suggested to be one of the conditions for the pearly luster of the wall thickenings. The formation of nacreous walls is initiated in young sieve tubes; finally the wall thickenings may occlude more than half of their cross-sectional area.—Sieve-tube plastids fromAnnonaceae andMyristica contain protein inclusions and often supplementary starch grains.


Meinem Lehrer, Herrn Prof. Dr.Walter Schumacher, in Dankbarkeit zum 70. Geburtstag.  相似文献   

11.
The movement of 14C-photosynthate in morning glory (Ipomea nil Roth, cu. Scarlet O'Hara) vines 2 to 5 meters long was followed by labeling a lone mature leaf with 14CO2 and monitoring the arrival rate of tracer at expanding sink leaves on branches along the stem. To a first approximation, the kinetic behavior of the translocation profiles resembled that which would be expected from movement at a single velocity (“plug flow”) without tracer loss from the translocation stream. There was no consistent indication of a velocity gradient along the vine length. The profile moved along the vine as a distinct asymmetrical peak which changes shape only slowly. The spatial distribution of tracer along the vine reasonably matched that predicted on the basis of the arrival kinetics at a sink, assuming plug flow with no tracer loss. These observations are in marked contrast to the kinetic behavior of any mechanism describable by diffusion equations.

However, a progressive change in profile shape (a symmetrical widening) was observed, indicating a range of translocation velocities. A minimum of at least two factors must have contributed to the observed velocity gradient: the exchange of 14C between sieve elements and companion cells (demonstrated by microautoradiography) and the range of velocities in the several hundred sieve tubes which carried the translocation stream. Possible effects of these two factors on profile spreading were investigated by means of numerical models. The models are necessarily incomplete, due principally to uncertainties about the exchange rate between sieve elements and companion cells and the degree of functional connectivity between sieve tubes of different conductivities. However, most of the observed profile spreading may be reasonably attributed to the combined effects of those two factors.

The mass average velocity of translocation (calculated from the mean times of 14C arrival at successive sink leaves) was about 75% of the maximum velocity (calculated from the times of initial detection at the same sink leaves), which was usually between 0.6 and 1 cm min−1. Owing to tracer exchange between sieve elements and companion cells, the mass average velocity of tracer in the sieve tubes was probably closer to 86% of the maximum velocity, a figure which agreed with a predicted velocity distribution based on calculated sieve tube conductivities and the size distribution of functional sieve tubes.

  相似文献   

12.
Zusammenfassung DiePlasmafilamente entstehen beiMusa frei im Cytoplasma der noch kern- und tonoplastenhaltigen Siebröhren, wahrscheinlich aus der Verdichtung fadenförmiger Vorstufen. Sehr früh lagern sie sich zu Parallelgruppen zusammen, die den plasmatischen Raum zwischen Tonoplast und Plasmalemma ganz einnehmen können. Nach der Rückbildung des Tonoplasten durchlaufen die Einzelfilamente während ihrer Dispersion über das Siebröhrenlumen einen Gestaltwandel von 160–200 ÅA weiten tubulusähnlichen Formen in 80–120 Å weite perlschnurartig strukturierte Fäden. Die tonoplastenfreien Siebröhren vonTamus enthalten vergleichbar enge Filamente, während in den Siebröhren vonNuphar auch nach der Tonoplasten-Degeneration ausschließlich tubulusähnliche Filamente (Ø 150–180 Å) vorkommen. Die von den Plasmafilamenten eingenommenen Zellbereiche sind im allgemeinen frei von ER-Membranen, allein beiNuphar werden die Filamente auffallend stark von Elementen des ER durchsetzt.Gestreckte wandparalleleMikrotubuli (Ø ca. 200 Å) sind sehr zahlreich in jungen Siebröhren, in ausdifferenzierten Leitbahnen fehlen sie ganz.Die Differenzierung derSiebporen wird noch vor der Rückbildung von Kern und Tonoplast eingeleitet. Die einzelnen Poren gehen auf je einen Plasmodesmos zurück, dessen Durchtrittsfläche beiMusa um das 40- bis 50fache zur offenen Siebpore erweitert wird. Die spätere Porenweite ist durch Callose und lokal begrenzte ER-Zisternen auf beiden Seiten der Zellwand markiert. In den offenen Poren vonMusa, Nuphar, Tamus undTinantia sind Plasmafilamente locker angeordnet und gleichmäßig verteilt bzw. zu einer Dichtestlage zusammengezogen.In einer Rückschau werden abschließend Probleme der Siebröhren-Differenzierung besprochen.
Contributions to fine structure and dispersal of plasmatic filaments in sieve tubes and to development and structure of sieve pores in some monocotyledons and inNuphar
Summary InMusa plasmatic filaments have their origin in any part of the cytoplasm of the still nucleus- and tonoplast-containing sieve tubes. The first filaments seem to condense out of finer elements and soon arrange into parallel groups that often occupy the total plasmatic area between tonoplast and plasmalemma. Following the disintegration of the tonoplast the plasmatic filaments undergo structural alterations which transform 160 to 200 Å wide filaments of young sieve tubes into 80 to 120 Å wide filaments of differentiated ones. Mature sieve tubes ofTamus contain striated filaments, too, whereasNuphar sieve tubes after the degeneration of their tonoplasts still have tubular filaments (Ø 150–180 Å). InNuphar plasmatic areas occupied by plasmatic filaments are remarkably interspersed by elements of the ER-system.Parietal microtubules (Ø 200 Å) are numerous in young sieve tubes, they are absent in differentiated elements.Antecedent to the final disintegration of nucleus and tonoplastsievepore differentiation will be initiated. Sieve pores can be traced back to plasmodesmata, the pore area of which will be widened up to the 40 to 50fold, building the mature sieve pores ofMusa. The later breadth of a pore is distinctly marked by callose and by local ER-cisternae on either side of the developing sieve plate. Open pores ofMusa, Nuphar, Tamus, andTinantia are crossed by plasmatic filaments that are equally distributed in carefully fixed pores without callose.In a final retrospect problems of sieve-tube differentiation will be discussed.


Teil einer Habilitationsschrift der Math.-Naturw. Fakultät Bonn.

Mit dankenswerter Unterstützung der Stiftung Volkswagenwerk und der Deutschen Forschungsgemeinschaft (Zuwendungen an Prof. Dr. W.Schumacher). Für zuverlässige Mitarbeit danke ich FrauChrista Grabert.  相似文献   

13.
Application of 10 to 100 μg indol-3-ylacetic acid to the leaves of rooted cuttings of aspen caused inhibition of root growth after three hours. Root growth recovered within 24 hours after IAA treatment. Swelling of the root tips occurred during the period of inhibition. The roots responded in the same way if IAA was applied in solution to the cut stem surface above the mature leaves. IAA-1-14C applied through a cut stem surface or to mature leaves was translocated downwards in the plants and labelled IAA could be isolated from the roots 3 to 24 hours after application. The ethanol-soluble activity decreased rapidly indicating a rapid metabolism or binding of IAA. IAA-1-14C applied to growing leaves was not translocated. From the rapid response of root growth it was concluded that IAA was translocated into the roots at a rate of about 7 cm per hour. This rate of translocation indicates that the sieve tubes are involved in the translocation. Implications of the results for the translocation of endogenous auxin into the roots are discussed.  相似文献   

14.
Translocation of carbon in powdery mildewed barley   总被引:6,自引:1,他引:5       下载免费PDF全文
This paper compares translocation in healthy and powdery mildew (Erysiphe graminis f. sp. hordei, race CR3) infected barley (Hordeum vulgare, variety Manchuria). The sink-like properties of the powdery mildew infection were used to determine what effect imposing a sink in the midst of normal source tissue (mature primary leaf) had on the translocation process. The pattern of translocation was determined by monitoring the movement of 14C which was photosynthetically incorporated from 14C either by the primary or second leaf. In the healthy primary leaf of barley, 14C fixed in the tip section of the blade was preferentially translocated to the root, whereas 14C fixed in the basal section was primarily translocated to the shoot. When a sporulating powdery mildew infection was present in the mid-section of the primary leaf, 14C fixed in that section or in the acropetal healthy tip section readily accumulated in the infection area. Labeled carbon fixed in the healthy basal section was translocated into the other parts of the plant with only a small fraction moving acropetally into the infected mid-section. The 14C fixed by the second leaf was translocated to the root and younger shoot with very little entering the primary leaf. The presence of the mildew infection did not alter this pattern.  相似文献   

15.
Summary Whole young plants were allowed to fix photosynthetically C14O2 for 12 hours. The absolute amount and the specific activity of trigonelline, caffeine and glucose in developing and adult leaves were subsequently determined during up to five weeks. There is a rapid incorporation of photosynthetically fixed carbon into trigonelline in both developing and adult leaves. The specific activity of caffeine however increases to any extent only in young developing leaves. It can be concluded that both trigonelline and caffeine are synthesized in leaves ofCoffea arabica. Other problems of the metabolism and translocation of the two substances are discussed.

Mit 5 Textabbildungen  相似文献   

16.
Manfred Kluge 《Planta》1967,73(1):50-61
Summary Sieve tube sap obtained from cucumber plants infected by Cucumis Virus 2 A induced the typical mosaic disease when it was inoculated into healthy plants of the same species. The infectious factor could not be removed by dialysis or by treatment with phosphodiesterase. Therefore it is improbable that the virus is transported in the sieve tubes as low molecular units or as an unprotected RNA. Rod shaped particles (345×23 m) were found in the infectious sieve tube sap when it was investigated by electron microscopy. The same particles could be found in the sap extracted from infected leaves, but never in sieve tube sap obtained from healthy plants. There is reason to suppose that the Cucumis Virus 2 A is transported in the sieve tubes as complete particles.

Einige Ergebnisse dieser Arbeit sind Teil einer Dissertation der Technischen Hochschule Darmstadt (D 17, 1964).  相似文献   

17.
The Effect of 2,4-Dinitrophenol on Translocation in the Phloem   总被引:1,自引:0,他引:1  
The effect of 2,4-dinitrophenol (DNP) on sucrose-14C transport in Soya seedlings has been analysed. The aim was to distinguish between an effect of the inhibitor on sugar movement within the phloem sieve tubes themselves, and on the prior steps of uptake and secretion of sugar into the conducting cells. DNP drastically inhibited sucrose-14C transport if it was applied to the 14C-treated leaf immediately before, or during, 14C supply. Transport was also strongly inhibited if DNP was applied along the translocation path while the 14C-treated leaflet was still in position on the plant. When, bowever, DNP was applied through the cut petioles of the primary leaves after removal of the 14C-treated terminal leaflet of the first trifoliate leaf, no inbibition was observed. On the contrary, transport appeared to have been promoted: significantly more 14C disappeared from the upper regions of DNP-treated plants as compared with controls, while in the lower plant parts more 14C accumulated. Different rates of synthesis of sucrose-14C into non-alcohol-soluble compounds could not account for this result. A similar stimulatory effect was observed when DNP was applied to the cut petiole of a primary leaf opposite that treated with 14C. Several indications were obtained that 14C which has reached the lower parts of the plant may circulate upwards again through the phloem within about 15 minutes. When sucrose-14C was introduced into the roots via the xylem, both DNP treatment and prior steam girdling resulted in the apparent accumulation of 14C in the lower plant parts. the results would be compatible with DNP inhibition of upwards movement in the phloem. DNP might also have affected sugar uptake processes in cells neighbouring the translocation path. It is concluded that the inhibitory effect of DNP on downwards phloem transport reported by earlier workers was probably due to an effect on uptake and/or secretion into the sieve tubes, not to an effect on the conducting cells themselves. Modern theories for phloem transport are discussed in the light of these findings.  相似文献   

18.
The uptake and the transport of exogenously applied epibrassinolide (EBR) in seedlings of cucumber and wheat were examined by autoradiography using14C-EBR.14C-EBR was applied to roots, young and mature leaves, and the shoot apex. When applied to roots,14C-EBR was readily taken up and was swiftly transported throughout both plant species. When14C-EBR was applied to the adaxial surface of a young cucumber leaf, it was readily taken up, but was very slowly transported. In cucumber leaves,14C-EBR was transported throughout the treated leaf after 3 days of treatment, and then it was transported to upper leaves from the treated leaf after 7 days. Some 6.3% of applied14C-EBR was transported to the newly expanded leaves. In wheat leaves,14C-EBR was transported only in the apical direction from the treated spot after 3 days of treatment, but it was not transported from the treated leaf to the other leaves or organs even after 7 days. Some 1.3% of applied14C-EBR was transported to the tip area of the treated leaf. These results indicate that exogenous EBR applied to intact plants is acropetally transported.  相似文献   

19.
The loading and transport functions of vascular bundles in maize (Zea mays L.) leaf strips were investigated by microautoradiography after application of 14CO2. The concentrations of 14C-contents in thin-walled sieve tubes of individual bundles in the loading and transport regions were determined by digital image analysis of silver-grain density over the sieve tubes and compared. In the loading region, relatively high concentrations of 14C-contents were found in the thin-walled sieve tubes of small bundles and in the small, thin-walled sieve tubes of the intermediate bundles; the concentration of 14C-label in large bundles was very low. In the transport region, at a transport distance of 2 cm, all of the small bundles contained 14C-assimilates, but generally less than the same bundles did in the loading region; by comparison, at that distance intermediate and large bundles contained two-to threefold more 14C-assimilates than the same bundles in the loading region. The lateral transfer of assimilates from smaller to larger bundles via transverse veins could be demonstrated directly in microautoradiographs. A reverse transport from larger to smaller bundles was not found. At a transport distance of 4 cm, all large and intermediate bundles were 14C-labeled, but many of the small bundles were not. Although all longitudinal bundles were able to transport 14C-asimilates longitudinally down the blade, it was the large bundles that were primarily involved with longitudinal transport and the small bundles that were primarily involved with loading.  相似文献   

20.
Microautoradiography was used to follow the translocation pathways of 14C-labeled photosynthate from mature source leaves, through the stem, to immature sink leaves three nodes above. Translocation occurred in specific bundles of the midveins and petioles of both the source and sink leaves and in the interjacent internodes. When each of six major veins in the lamina of an exporting leaf was independently spot-fed 14CO2, label was exported through specific bundles in the petiole associated with that vein. When the whole lamina of a mature source leaf was fed 14CO2, export occurred through all bundles of the lamina, but acropetal export in the stem was confined to bundles serving certain immature sink leaves. Cross-transfer occurred within the stem via phloem bridges. Leaves approaching maturity translocated photosynthate bidirectionally in adjacent subsidiary bundles of the petiole. That is, petiolar bundles serving the lamina apex were exporting unlabeled photosynthate while those serving the lamina base were simultaneously importing labeled photosynthate. The petioles and midveins of maturing leaves were strong sinks for photosynthate, which was diverted from the export front to differentiating structural tissues. The data support the idea of bidirectional transport in adjacent bundles of the petiole and possibly in adjacent sieve tubes within an individual bundle.Abbreviations C central leaf trace - L left leaf trace - LPI leaf plastochron index - R right leaf trace  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号