首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Solid state deuterium NMR was employed on oriented multilamellar dispersions consisting of 1,2-dilauryl-sn-glycero-3-phosphatidylcholine and deuterium (2H) exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamic structure of the channel conformation of gramicidin in a liquid crystalline phase. The corresponding spectra were used to discriminate between several structural models for the channel structure of gramicidin (based on the left- and right-handed beta 6.3 LD helix) and other models based on a structure obtained from high resolution NMR. The oriented spectrum is complicated by the fact that many of the doublets, corresponding to the 20 exchangeable sites, partially overlap. Furthermore, the asymmetry parameter, eta, of the electric field gradient tensor of the amide deuterons is large (approximately 0.2) and many of the amide groups are involved in hydrogen bonding, which is known to affect the quadrupole coupling constant. In order to account for these complications in simulating the spectra in the fast motional regime, an ab initio program called Gaussian 90 was employed, which permitted us to calculate, by quantum mechanical means, the complete electric field gradient tensor for each residue in gramicidin (using two structural models). Our results indicated that the left-handed helical models were inconsistent with our observed spectra, whereas a model based on the high-resolution structure derived by Arseniev and coworkers, but relaxed by a simple energy minimization procedure, was consistent with our observed spectra. The molecular order parameter was then estimated from the motional narrowing assuming the relaxed (right-handed) Arseniev structure. Our resultant order parameter of SZZ = 0.91 translates into an rms angle of 14 degrees, formed by the helix axis and the local bilayer normal. The strong resemblance between our spectra (and also those reported for gramicidin in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) multilayers) and the spectra of the same peptide incorporated in a lyotropic nematic phase, suggests that the lyotropic nematic phase simulates the local environment of the lipid bilayer.  相似文献   

2.
T M Alam  G Drobny 《Biochemistry》1990,29(14):3421-3430
Solid-state 2H NMR spectroscopy was used to investigate dynamics in the [methyl-2H]thymidine-labeled oligonucleotide [d(CGCGAAT*T*CGCG)]2. Quadrupole echo line shapes, spin-lattice relaxation, and quadrupolar echo decay rates were investigated as a function of hydration W (moles of water/moles of nucleotide) between 0 and approximately 30. The amplitude of the base motion, modeled as a fast four-site libration, or diffusion in a cone, increased slightly with higher levels of hydration. A slower component of motion about the helix axis appears at W approximately 10 and increases in rate and amplitude, leading to the intermediate rate line shape observed at W approximately 21.  相似文献   

3.
The single channel conductivity of the gramicidin channel has been measured for all the alkali ions using both H2O and 2H2O as a medium. Significant changes in conductivity with medium have been observed in all cases except lithium.  相似文献   

4.
《FEBS letters》2014,588(9):1590-1595
In contrast to expectations that unsaturated fatty acids contribute to oxidative stress by providing a source of lipid peroxides, we demonstrated the protective effect of double bonds in lipids on oxidative damage to membrane proteins. Photodynamic inactivation of gramicidin channels was decreased in unsaturated lipid compared to saturated lipid bilayers. By estimating photosensitizer (boronated chlorine e6 amide) binding to the membrane with the current relaxation technique, the decrease in gramicidin photoinactivation was attributed to singlet oxygen scavenging by double bonds in lipids rather than to the reduction in photosensitizer binding. Gramicidin protection by unsaturated lipids was also observed upon induction of oxidative stress with tert-butyl hydroperoxide.  相似文献   

5.
Signals between a cell and its environment are often transmitted through membrane proteins; therefore, many membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, are important drug targets. Structural information about membrane proteins remains limited owing to challenges in protein expression, purification and the selection of membrane-mimicking systems that will retain protein structure and function. This review describes recent advances in solution NMR applied to the structural study of integral membrane proteins. The examples herein demonstrate that solution NMR spectroscopy will play a unique role not only in structural analysis, but also drug discovery of membrane proteins.  相似文献   

6.
The single channel conductivity of the gramicidin channel has been measured for all the alkali ions using both H2O and 2H2O as a medium. Significant changes in conductivity with medium have been observed in all cases except lithium.  相似文献   

7.
The 2H-NMR spectra of 50 wt.% aqueous multilamellar dispersions of dipalmitoylphosphatidylcholine (DPPC) containing either selectively deuterated 1-decanol (25 mol%) or [2H17]-1-octanol (25 mol%) have been measured as a function of temperature. Both alkanols are potent anesthetics. A detailed carbon-deuterium bond order parameter profile of 1-decanol in liquid crystalline phospholipid dispersions at 50 degrees C was determined from the quadrupolar splittings of 1-decanols deuterated at eight different positions. A maximum order parameter SCD = 0.20 was obtained for [5,5-2H2]-1-decanol, with labels at both ends of the 1-decanol exhibiting reduced order parameters. Explanations for the reduced order towards the hydroxyl group of 1-decanol are discussed in terms of either increased amplitudes of motion or geometric effects due to hydrogen bonding. By comparing the order parameter profile of sn-2 chain deuterated phosphatidylcholine dispersions containing 25 mol% 1-decanol (J.L. Thewalt, S.R. Wassall, H. Gorrissen and R.J. Cushley, Biochim. Biophys. Acta, 817 (1985) 355) with the profile of deuterated 1-decanol in DPPC, we estimate that decanol is approximately parallel to the C-3 to C-13 region of the phosphatidylcholine's sn-2 chain. Variation of the spectral moments M1 with temperature indicates that both 1-decanol and 1-octanol are sensitive to the packing of the lipid in which they are dissolved. Below the phase transition temperature, the 2H-NMR spectra of either 1-decanol (selectively deuterated) or 1-octanol (perdeuterated) are broad powder patterns, characteristic of axially symmetric rotation about the alcohol's long axis. This is in contrast to the 2H-NMR spectra obtained from deuterated phosphatidylcholine under similar conditions, which implies that the phospholipid acyl chain conformations are more restricted than those of the alcohol at these temperatures. From the M1 behavior of the various alkanol chain segments with temperature, the gel to liquid crystalline phase transition is seen to initiate in the middle of the DPPC/1-alkanol bilayer.  相似文献   

8.
P O Quist 《Biophysical journal》1998,75(5):2478-2488
The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbons, the widths of which were approximately 350 Hz. The beta-sheet-like local structure of gramicidin A was observed as an upfield shift of the gramicidin alpha and carbonyl resonances. Under slow sample spinning (500 Hz), the intensity of the spinning sidebands from 13C in the backbone carbonyls was used to determine the residual chemical shift tensor. As expected, the elements of the residual chemical shift tensor were consistent with the single-stranded, right-handed beta6.3 helix structure proposed for gramicidin A in lipid membranes.  相似文献   

9.
10.
B Kieffer  P Koehl  J F Lefèvre 《Biochimie》1992,74(9-10):815-824
The internal dynamics of a cyclic peptide which was designed to mimic an antigenic loop of the haemagglutinin, is studied through heteronuclear relaxation along the 13C alpha-1H alpha vectors and through homonuclear relaxation along the 1H alpha-1HN and 1H beta-1H beta' vectors. Order parameters are extracted from the longitudinal and cross-relaxation data. Molecular dynamics simulations are performed and the order parameters are calculated in different ways from the trajectories. The simulation, which is performed in vacuo, gives smaller order parameters (vector motions of larger amplitude) than the experimental results. However, the general features of the experimental order parameters are reproduced by the molecular dynamics simulation. The flexibility of the molecule can then be investigated from the results of the molecular dynamics. It shows that the mobility observed through the order parameters is due to motions in flanking regions, remote from the observed vectors.  相似文献   

11.
Deuterium nuclear magnetic resonance (2H NMR) was used to study the interaction of a cationic amphiphilic peptide with pure DMPC membranes and with mixed bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylserine (DMPS). The choline and serine headgroups were selectively deuteriated at the alpha and beta positions. The amphiphilic peptide, with 20 leucine residues in the hydrophobic core and two cationic hydrophilic lysine residues at each end, spanned the lipid bilayer. Although 2H NMR experiments using DMPC with perdeuteriated fatty acyl chains showed that the average order parameter of the hydrophobic region was not significantly modified by the incorporation of the amphiphilic peptide, for either DMPC or DMPC/DMPS (5:1) bilayers, large perturbations of the quadrupolar splittings of the choline and serine headgroups were observed. The results obtained with the DMPC headgroup suggest that the incorporation of the cationic peptide in both DMPC and DMPC/DMPS (5:1) bilayers leads to a structural perturbation directly related to the net charge on the membrane surface. The magnitude of the observed effect seems to be similar to those observed previously with other cationic molecules [Seelig, J., MacDonald, P.M., & Scherer, P.G. (1987) Biochemistry 26, 7535-7541]. Two of the three quadrupolar splittings of the PS headgroup exhibited large variations in the presence of the amphiphilic peptide, while the third one remained unchanged. Our data have led us to propose a model describing the influence of membrane surface charges on headgroup conformation. In this model, the surface charge is represented as a uniform charge distribution. The electric field due to the charges produces a torque which rotates the polar headgroups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Diacylglycerol kinase (DAGK) is a 13-kDa integral membrane protein that spans the lipid bilayer three times and which is active in some micellar systems. In this work DAGK was purified using metal ion chelate chromatography, and its structural properties in micelles and organic solvent mixtures studies were examined, primarily to address the question of whether the structure of DAGK can be determined using solution NMR methods. Cross-linking studies established that DAGK is homotrimeric in decyl maltoside (DM) micelles and mixed micelles. The aggregate detergent-protein molecular mass of DAGK in both octyl glucoside and DM micelles was determined to be in the range of 100-110 kDa-much larger than the sum of the molecular weights of the DAGK trimers and the protein-free micelles. In acidic organic solvent mixtures, DAGK-DM complexes were highly soluble and yielded relatively well-resolved NMR spectra. NMR and circular dichroism studies indicated that in these mixtures the enzyme adopts a kinetically trapped monomeric structure in which it irreversibly binds several detergent molecules and is primarily alpha-helical, but in which its tertiary structure is largely disordered. Although these results provide new information regarding the native oligomeric state of DAGK and the structural properties of complex membrane proteins in micelles and organic solvent mixtures, the results discourage the notion that the structure of DAGK can be readily determined at high resolution with solution NMR methods.  相似文献   

13.
Gallagher GJ  Hong M  Thompson LK 《Biochemistry》2004,43(24):7899-7906
A recently developed solid-state NMR method for measurement of depths in membrane systems is applied to gramicidin A, a membrane-bound peptide of known structure, to investigate the potential of this method. (15)N-detected, (1)H spin diffusion experiments demonstrate the resolution of the technique by measuring the 4-5 A depth differences between three (15)N-labeled backbone sites (Trp13, Val7, Gly2) in gramicidin A. We also show that (13)C-detected, (1)H spin diffusion experiments on unlabeled gramicidin A are sufficient to discriminate between the end-to-end dimer and double-helix structures of gramicidin A. Thus, spin diffusion solid-state NMR experiments can provide a simple approach, which does not require labeled samples, for testing structural models of membrane-bound peptides.  相似文献   

14.
《Molecular membrane biology》2013,30(5-8):156-178
Abstract

Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.  相似文献   

15.
Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

16.
Abstract

Membrane proteins represent up to 30% of the proteins in all organisms, they are involved in many biological processes and are the molecular targets for around 50% of validated drugs. Despite this, membrane proteins represent less than 1% of all high-resolution protein structures due to various challenges associated with applying the main biophysical techniques used for protein structure determination. Recent years have seen an explosion in the number of high-resolution structures of membrane proteins determined by NMR spectroscopy, especially for those with multiple transmembrane-spanning segments. This is a review of the structures of polytopic integral membrane proteins determined by NMR spectroscopy up to the end of the year 2010, which includes both β-barrel and α-helical proteins from a number of different organisms and with a range in types of function. It also considers the challenges associated with performing structural studies by NMR spectroscopy on membrane proteins and how some of these have been overcome, along with its exciting potential for contributing new knowledge about the molecular mechanisms of membrane proteins, their roles in human disease, and for assisting drug design.  相似文献   

17.
Biological membranes contain domains having distinct physical properties. We study defined mixtures of phosphoglycerolipids and sphingolipids to ascertain the fundamental interactions governing these lipids in the absence of other cell membrane components. By using (2)H-NMR we have determined the temperature and composition dependencies of membrane structure and phase behavior for aqueous dispersions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the ceramide (Cer) N-palmitoyl-sphingosine. It is found that gel and liquid-crystalline phases coexist over a wide range of temperature and composition. Domains of different composition and phase state are present in POPC/Cer membranes at physiological temperature for Cer concentrations exceeding 15 mol %. The acyl chains of liquid crystalline phase POPC are ordered by the presence of Cer. Moreover, Cer's chain ordering is greater than that of POPC in the liquid crystalline phase. However, there is no evidence of liquid-liquid phase separation in the liquid crystalline region of the POPC/Cer phase diagram.  相似文献   

18.
Conformational study of an Aib-rich peptide in DMSO by NMR.   总被引:1,自引:0,他引:1  
The strong propensity of 2-amino-2-methyl propanoic acid (Aib)-rich peptides to form stable helical structures is well documented. NMR analysis of the short peptide Z-(Aib)5-L-Leu-(Aib)2-OMe indicates the presence of a well-characterized 3(10)-helix even in dimethylsulfoxide (DMSO), a solvent known to disrupt helical structures. The structure remains stable at least up to 348 K. Stereospecific assignment of the diastereotopic methyls of Aib was achieved, with the assumption of a specific helical screw sense. The methyl more eclipsed with respect to the CO vector resonates at a higher field in the carbon dimension. Molecular dynamics simulations successfully predict the 3J(CHNH) coupling constant of Leu6 and most of the H-bonding pattern. Discrepancies were found for Aib3 and Aib7 amide protons which can be explained by a higher sensitivity of the simulations to the helix fraying at the end of the peptide and by the presence of extended conformations for Leu6 during most of the simulations.  相似文献   

19.
Many antibiotic peptides function by binding and inserting into membranes. Understanding this process provides an insight into the fundamentals of both membrane protein folding and antibiotic peptide function. For the first time, in this work, flow-aligned linear dichroism (LD) is used to study the folding of the antibiotic peptide gramicidin. LD provides insight into the combined processes of peptide folding and insertion and has the advantage over other similar techniques of being insensitive to off-membrane aggregation events. By combining LD data with conventional measurements of protein fluorescence and circular dichroism, the mechanism of gramicidin insertion is elucidated. The mechanism consists of five separately assignable steps that include formation of a water-insoluble gramicidin aggregate, dissociation from the aggregate, partitioning of peptide to the membrane surface, oligomerisation on the surface and concerted insertion and folding of the peptide to the double-helical form of gramicidin. Measurement of the rates of each step shows that although changes in the fluorescence signal cease 10 s after the initiation of the process, the insertion of the peptide into the membrane is actually not complete for a further 60 min. This last membrane insertion phase is only apparent by measurement of LD and circular dichroism signal changes. In summary, this study demonstrates the importance of multi-technique approaches, including LD, in studies of membrane protein folding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号