首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Internal water balance of barley under soil moisture stress   总被引:1,自引:1,他引:0       下载免费PDF全文
Leaf water potential, leaf relative water content, and relative transpiration of barley were determined daily under greenhouse conditions at 3 growth stages: tillering to boot, boot to heading, and heading to maturity. The leaf moisture characteristic curve (relative water content versus leaf water potential) was the same for leaves of the same age growing in the same environment for the first 2 stages of growth, but shifted at the heading to maturity stage to higher leaf relative water content for a given leaf water potential. Growth chamber experiments showed that the leaf moisture characteristic curve was not the same for plants growing in different environments.

Relative transpiration data indicated that barley stomates closed at a water potential of about −22 bars at the 3 stages studied.

The water potential was measured for all the leaves on barley to determine the variation of water potential with leaf position. Leaf water potential increased basipetally with plant leaf position. In soil with a moisture content near field capacity a difference of about 16.5 bars was observed between the top and bottom leaves on the same plant, while in soil with a moisture content near the permanent wilting point the difference was only 5.6 bars between the same leaf positions.

  相似文献   

2.
The contribution of stem water storage to the water balance of the arborescent palm, Sabal palmetto, was investigated using greenhouse studies, field measurements and a tree-cutting experiment. Water balance studies of greenhouse trees (1.5 to 3 m tall) were conducted in which transpiration was measured by weight loss, and changes in soil and stem water content by time-domain reflectometry. When the greenhouse plants were well-watered (soil moisture near saturation), water was withdrawn from the stem during periods of high transpiration and then replenished during the night so that the net transpirational water loss came primarily from the soil. As water was withheld, however, an increasing percentage of daily net transpirational water loss came from water stored in the stem. However, studies on palms growing in their natural environment indicated that during periods of high transpiration leaf water status was somewhat uncoupled from stem water stores. In a tree-cutting experiment, the maintenance of high relative water content of attached leaves was significantly correlated with stem volume/leaf area. Leaves of a 3-m tree remained green and fully hydrated for approximately 100d after it had been cut down, whereas those of a 1-m-tall plant turned brown within one week. The significance of stem water storage may be in buffering stem xylem potentials during periods of high transpiration and in contributing to leaf survival during extended period of low soil water availability.  相似文献   

3.
施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响   总被引:18,自引:0,他引:18  
在防雨池栽培条件下,研究了施氮量和花后土壤含水量对小麦旗叶衰老和粒重的影响.结果表明:各氮肥处理下,小麦旗叶SPAD值、可溶性蛋白质含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性和光合速率(Pn)均表现为:花后土壤含水量60%~70%处理>80%~90%处理>40%~50%处理,小麦旗叶丙二醛(MDA)含量表现为:花后土壤含水量40%~50%处理>80%~90%处理>60%~70%处理,表明花后土壤含水量过高或过低均可导致小麦旗叶早衰,影响籽粒灌浆,降低粒重.在花后相同土壤含水量条件下,旗叶SPAD值、可溶性蛋白质含量、SOD活性、CAT活性和Pn均随施氮量的增加而升高,MDA含量随施氮量的增加而降低,表明增施氮肥可以延缓小麦旗叶衰老,但过量施用氮肥则不利于小麦粒重的提高,尤其是在花后土壤缺水的情况下,施用过多氮肥可导致小麦粒重下降.在小麦生产中可以将施用氮肥和控制花后土壤水分含量相结合,延缓小麦植株衰老,提高粒重.  相似文献   

4.
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

5.
《Acta Oecologica》2007,31(3):386-398
Plant transpiration has a key role on both plant performance and ecosystem functioning in arid zones, but realistic estimates at appropriate spatial-temporal scales are scarce. Leaf and tiller morphology and crown architecture were studied together with leaf physiology and whole plant water balance in four individual plants of Stipa tenacissima of different sizes to determine the relative influence of processes taking place at different spatial and temporal scales on whole plant transpiration. Transpiration was estimated in potted plants by leaf-level gas exchange techniques (infrared gas analyzer and porometer), by sap flow measurements, and by integrating leaf physiology and crown architecture with the 3-D computer model Yplant. Daily transpiration of each individual plant was monitored using a gravimetric method, which rendered the reference values. Leaves on each individual plant significantly varied in their physiological status. Young and green parts of the leaves showed five times higher chlorophyll concentration and greater photosynthetic capacity than the senescent parts of the foliage. Instantaneous leaf-level transpiration measurements should not be used to estimate plant transpiration, owing to the fact that extrapolations overestimated individual transpiration by more than 100%. Considering leaf age effects and scaling the estimates according to the relative amount of each foliage category reduced this difference to 46% though it was still significantly higher than gravimetric measurements. Sap flow calculations also overestimated tussock transpiration. However, 3-D reconstruction of plants with Yplant and transpiration estimates, considering both the physiological status and the daily pattern of radiation experienced by each individual leaf section within the crown, matched the gravimetric measurements (differences were only 4.4%). The complex interplay of leaf physiology and crown structure must be taken into account in scaling up plant transpiration from instantaneous, leaf-level measurements, and our study indicates that transpiration of complex crowns is easily overestimated.  相似文献   

6.
In neotropical alpine grasslands (páramo), the natural tussock grass vegetation is extensively grazed and occasionally burned. The low productivity of the tussock grass seems to be the reason for the disappearance of this growth form in the most frequently intervened areas. The structure, microclimate and leaf elongation rates of new emerging leaves were studied for the dominant tussock grass species Calamagrostis effusa, at an undisturbed, a moderately grazed (7 year after fire) and a heavily grazed (3.5 years after fire) site. In absence of grazing and burning, the tussocks had a high standing crop (1.07±0.09 kg DW · m-2) and leaf area per projected tussock cover (LAI: 9.6±1.4). Two thirds of the total mass was dead and more than half of the leaves were in horizontal position. The tussock growth form protects the meristems from severe climatic conditions. At midday, the temperature was higher at meristem level than in the rest of the tussock. At this level, photosynthetic irradiance (PI) was almost extinct at 2.9±0.74% of PI above the vegetation. The red/far red ratio (R/FR) was strongly decreased. Initial leaf elongation of new born leaves was 2.3 mm · day-1, and constant during the year; estimated net annual production was 198±73.8 g m-2. At the moderately grazed and the heavily grazed study sites, the tussocks were smaller, greener and more erect than those at the undisturbed site. More PI reached the meristems and R/FR was higher at the base of grazed tussocks. Leaf elongation rates were lower. Most of the litter disappeared during the fires. The lower elongation rate of leaves in the grazed areas might be a response to defoliation, resulting in increased tillering and a lack growth associated with poor temperature insulation and more UV-B damage.  相似文献   

7.
Three aspects of the páramo vegetation's response to fires were investigated: the measurement of fire temperatures, general observations of changes in plant communities following fires, and monitoring the fate of individual plants after burning.Fire temperatures were strongly influenced by the physiognomy of the vegetation, dominated by tussocks of Calamagrostis spp. Temperatures were highest amongst the upper leaves of the tussock (sometimes >500°C). The middle levels of the tussock experienced temperatures in excess of 400°C, but in the dense leaf bases temperatures were often below 65°C. On the ground between tussocks, temperatures were variable, whereas 2 cm below ground temperatures failed to reach 65°C.Plant survival depended on the intensity of the fire and the plant's position within the tussock structure. Survival was often the result of high temperature avoidance (with buds shielded by other plant parts or buried beneath the soil surface).Post-fire Calamagrostis tiller mortality rates were high and tussock regrowth was slow. Some other species appear to maintain their populations by exploiting this recovery phase for seedling establishment on tussocks.Between tussocks, changes of occupancy at the level of the individual plants were greater after fire than in control vegetation. Most transitions were random. Those which departed from random often involved gaps and were related to post-fire mortality, regrowth from below-ground parts, colonisation or, in the case of a clonal mat-forming species, to spatial rearrangement of rosettes. Recovery was slower at higher altitude. Recovery was much slower in burned plots when the upper 2 cm of soil was removed (along with buried plant parts) compared with burned plots.Qualitative observations suggest that recovery may consist of a cyclical process, mediated by the serial dominance of several species that are physiognomically important.The frequency of fires determines the amount of fuel accumulated within grass tussocks and some plants may be unable to survive repeated burning. Chance survival of species in unburned patches of vegetation and random colonisation of gaps may be important determinants of subsequent community structure.  相似文献   

8.
Clonal plant species often form genetically diverse populations, even when sexual reproduction in a population is rarely observed. Here we test whether the spatially discrete clusters of plants (tussocks of graminoids) formed within populations of some clonal species can likewise be multiclonal. We sampled leaves of ramets (shoots) within 20 tussocks of the grass Achnatherum splendens in the Otindag Sandland in Inner Mongolia, China, and genotyped the ramets using standard molecular protocols. The 20 tussocks were allocated to three classes: (i) small, circular, (ii) large, circular and (iii) large, irregular. Most tussocks (80%) were multiclonal and some contained at least eight different clones. Irregularly shaped tussocks contained twice as many clones as circular tussocks; neither size nor cover within a tussock affected number of clones per tussock, and the smaller clones in a tussock showed no tendency to occur on the edge or near the center of a tussock. These patterns seem more consistent with formation of multiclonal tussocks by coalescence than by colonization. Therefore, individual tussocks, especially large, irregular ones, cannot a priori be treated as genetic individuals without assessing their genetic information in, e.g., population demography, genetics and evolution studies.  相似文献   

9.
Water‐use efficiency in grapevines is dependent on the aerial and below‐ground environment of the plant. Specifically, transpiration efficiency, the ratio of net carbon fixation to water loss, may be influenced by soil moisture and the leaf‐to‐air vapour pressure deficit (VPD) in the soil–plant–atmosphere continuum. The interactive effect of these abiotic parameters, however, has not been suitably investigated in field‐grown grapevines. Accordingly, gas exchange of an anisohydric variety, Semillon, was assessed across a number of vineyards in two warm grape‐growing regions of New South Wales (NSW) to ascertain how soil moisture and VPD interact to affect transpiration efficiency at the leaf level. Leaf gas exchange measurements demonstrated that the rate of transpiration (E) was driven by VPD, particularly under high soil moisture. Both high VPD and low soil moisture decreased photosynthesis (A) and instantaneous leaf transpiration efficiency (A/E). Increased intrinsic leaf transpiration efficiency (A/g) in response to drying soil was limited to vines growing in a non‐irrigated vineyard. In this site, A/g was negatively related to vine water status. VPD did not have a substantial influence on A/g in any vineyard. While VPD is the main driver for A/E, soil moisture is an important determinant of A/g. Under high VPD, stomatal closure in Semillon leaves was not substantial enough to suitably curtail transpiration, and as a consequence A/E declined. These data indicate that in warm climates, irrigation scheduling of anisohydric varieties must take into account both VPD and soil moisture so that vine water status can be maintained.  相似文献   

10.
Increasing evidence shows that facilitative interaction and negative plant–soil feedback are driving factors of plant population dynamics and community processes. We studied the intensity and the relative impact of negative feedback on clonal growth and seed germination of Scirpus holoschoenus, a ‘ring’ forming sedge dominant in grazed grassland, and the consequences for species coexistence. The structure of aboveground tussocks was described. A Lithium tracer assessed belowground distribution of functional roots. Seed rain and seedling emergence were compared for different positions in relation to Scirpus tussocks. Soil bioassays were used to compare growth on soil taken from inside and outside Scirpus tussocks of four coexisting species (Mentha acquatica, Pulicaria dysenterica, Scirpus holoschoenus and Dittrichia viscosa). We also compared plant performance of dominant plant species inside and outside Scirpus tussocks in the field. The ‘ring’ shaped tussocks of S. holoschoenus were generated by centrifugal rhizome development. Roots were functional and abundant under the tillers and extending outside the tussocks. The large roots mats that were present in the inner tussock zone were almost all dead. Seedling emergence and growth both showed a strong negative feedback of Scirpus in the inner tussock zone. Scirpus clonal development strongly reduced grass biomass. In the degenerated tussock zone, Pulicaria and Mentha mortality was lower, and biomass of individual plants and seed production were higher. This positive indirect interaction could be related to species-specific affinity to soil conditions generated by Scirpus, and interspecific competitive release in the degenerated tussock zone. We conclude that Scirpus negative feedback affects its seedling emergence and growth contributing to the development of the degenerated inner tussock zone. Moreover, this enhances species coexistence through facilitative interaction because the colonization of the inner tussock zone is highly species-specific.  相似文献   

11.
Sugar beet were grown for short periods with different amounts of moisture in the soil and air. Growing plants in wet soil (23 % moisture on dry weight) compared with dry soil (15% moisture) increased growth of the shoots and roots and plant dry weights by 15% in young plants and 10% in mature plants. Growing plants in wet air containing 10.9 g m-3 of water (equivalent to a saturation deficit of 2.5 mb) compared with dry air containing 6.4 g m-3 of water (saturation deficit = 8.5 mb) increased the dry weights of both young and mature plants by 8%, mostly by increasing the sizes of their storage roots. Wet air and wet soil increased the net assimilation rates of both young and mature plants. Wet soil, but not wet air, increased leaf areas of young plants by accelerating leaf expansion, and both increased the leaf area of mature plants by slowing senescence of the older leaves. Wet soil increased the water potential of the leaves of both young and mature plants and, by doing so, increased their stomatal conductances and rates of photosynthesis. Wet air also increased stomatal conductances and rates of photosynthesis of leaves of plants of both ages, but without changing their water potentials. Stomatal conductances and photosynthetic rates were greater for young leaves than mature on the same plant and at the same water potential. It is suggested that at certain stages in the crops growth photosynthetic efficiency could be increased by applying additional water as a mist to increase the moisture content of the air around the crop.  相似文献   

12.
Increased leaf phosphorus (P) concentration improved the water-use efficiency (WUE) and drought tolerance of regularly defoliated white clover plants by decreasing the rate of daily transpiration per unit leaf area in dry soil. Night transpiration was around 17% of the total daily transpiration. The improved control of transpiration in the high-P plants was associated with an increased individual leaf area and WUE that apparently resulted from net photosynthetic assimilation rate being reduced less than the reductions in the transpiration (27% vs 58%). On the other hand, greater transpiration from low-P plants was associated with poor stomatal control of transpirational loss of water, less ABA in the leaves when exposed to dry soil, and thicker and smaller leaf size compared with high-P leaves. The leaf P concentration was positively related with leaf ABA, and negatively with transpiration rates, under dry conditions ( P < 0.001). However, leaf ABA was not closely related to the transpiration rate, suggesting that leaf P concentration has a greater influence than ABA on the transpiration rates.  相似文献   

13.
Haase  Peter  Pugnaire  Francisco I.  Clark  S.C.  Incoll  L.D. 《Plant Ecology》1999,145(2):327-339
Seasonal changes in leaf demography and gas exchange physiology in the tall evergreen tussock grass Stipa tenacissima, one of the few dominant plant species in the driest vegetation of Europe, were monitored over a period of two years at a field site in semi-arid south-eastern Spain. Three age-classes of leaves – young, mature and senescent – were distinguished in the green canopy. Production of new leaves and extension growth of older leaves occurred exclusively from October–November to May–June. The rate of extension was significantly correlated with gravimetric soil water content. Leaf growth ceased after gravimetric soil water content fell below 0.015 g g–1 at the beginning of the dry season which corresponded to pre-dawn leaf water potentials of -3.0 MPa. Leaf senescence and desiccation reduced green leaf area by 43–49% during the dry season. Diurnal changes in the net photosynthetic rate of all three cohorts of leaves were bimodal with an early morning maximum, a pronounced midday depression and a small recovery late in the afternoon. Maximum photosynthetic rates of 10–16 mol CO2 m–2 s–1 were attained from November 1993 to early May 1994 in young and mature leaves. Photosynthetic rate declined strongly during the dry season and was at or below compensation in September 1994. Gas exchange variables of young and mature leaves were not significantly different, but photosynthetic rate and diffusive conductance to water vapour of senescing leaves were significantly lower than in the two younger cohorts. Leaf nitrogen content of mature leaves varied seasonally between 2.9 and 5.2 g m–2 (based on projected area of folded leaves), but was poorly correlated with maxima of the photosynthetic rate. There was a stronger linear relationship between the daily maxima of leaf conductance and pre-dawn leaf water potential than with atmospheric water vapour saturation deficit. Seasonal and between-year variation in daily carbon assimilation were caused mainly by differences in climatic conditions and canopy size whereas the effect of age structure of canopies was negligible. Since water is the most important limiting factor for growth and reproduction of S. tenacissima, any future rise in mean temperature, which might increase evapotranspiration, or decrease in rainfall, may considerably reduce the productivity of the grasslands, particularly at the drier end of their geographical distribution.  相似文献   

14.
Although the tussock growth form of caespitose graminoids is widespread, the effect of this growth form on light interception and carbon gain of tillers has received little attention. Daily incident photosynthetic photon flux density (PFDinc) and carbon gain in monospecific stands of tussock grasses were compared with those of a hypothetical distribution with the equivalent tiller density per total ground area, but evenly distributed rather than clumped in tussocks. This was computed for two tussock grasses Pseudoroegneria spicata (Pursh) A. Löve (bluebunch wheatgrass) and Agropyron desertorum (Fisch, ex Link) Schult. (creasted wheatgrass) at different plant densities. Daily PFDinc and net photosynthesis (A) were greater if tillers were distributed uniformly rather than clumped in tussocks, except when the density of tussocks was so great as to approach a uniform canopy. When tussock density per ground area was low, much of the difference between tussock and uniform tiller densities in PFDinc and A was due to shading within the tussocks; up to 50–60% of the potential carbon gain was lost in A. desertorum due to shading within tussocks. In a matrix of tussocks, the light field for establishing seedlings was very heterogeneous; potential A ranged from 7 to 96% relative to an isolated seedling. The mean of daily PFDinc and A for seedlings in a tussock stand were nearly identical to the values in corresponding stands of uniform tiller distributions. It is hypothesized that the loss of A resulting from clumping tillers into tussocks is offset by benefits of protecting sequestered belowground resources from invasion by seedlings of competitors.  相似文献   

15.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   

16.
 采用LI—6000便携式光合分析系统对毛乌素沙区主要植物种油蒿、中间锦鸡儿、旱柳进行了不同时期光合作用,蒸腾作用日进程的测定,并同步测定有效光辐射、空气相对湿度、叶温、气温、胞间CO2浓度、气孔阻力、叶片水势及土壤水势等因子;结果表明:不同时期、不同植物种其光合、蒸腾特征各异;植物的光合、蒸腾与环境因子和植物内部因子之间有密切关系,其中有效光辐射是影响光合作用、蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用;不同植物种间气孔对环境条件变化的响应程度不同,以中间锦鸡儿最为灵敏;3种植物的水分利用效率表明,中间锦鸡儿的水分利用效率较油蒿、旱柳为高。  相似文献   

17.
The present study aims at characterizing plant water status under field conditions on a daily basis, in order to improve operational predictions of plant water stress. Ohm's law analog serves as a basis for establishing daily soil-plant relationships, using experimental data from a water-limited soybean crop: 227-1. The daily transpiration flux, T, is estimated from experimental evapotranspiration data and simulated soil evaporation values. The difference, 227-2, named the effective potential gradient, is derived from i) the midday leaf potential of the uppermost expanded leaves and ii) an effective soil potential accounting for soil potential profile and an effectiveness factor of roots competing for water uptake. This factor is experimentally estimated from field observation of roots. G is an apparent hydraulic conductance of water flow from the soil to the leaves. The value of the lower potential limit for water extraction, required to assess the effective soil potential, is calculated with respect to the plant using the predawn leaf potential. It is found to be equal to –1.2 MPa. It appears that over the range of soil and climatic conditions experienced, the daily effective potential gradient remains constant (1.2 MPa), implying that, on a daily basis, transpiration only depends on the hydraulic conductance. The authors explain this behaviour by diurnal variation of osmotic potential, relying on Morgan's theory (1984). Possible generalization of the results to other crop species is suggested, providing a framework for reasoning plant water behaviour at a daily time step.  相似文献   

18.
Abstract Water flow and water storage were investigated for Agave deserti, a desert succulent showing crassulacean acid metabolism (CAM). The anatomy and water relations of the peripheral chlorenchyma, where CAM occurs, and the central water-storage parenchyma were investigated for its massive leaves so that these tissues could be incorporated as discrete elements into an electrical-circuit analogue of the whole plant. The daily cycling of osmotic pressure was represented by voltage sources in series with the storage capacitors. With soil water potential and leaf transpiration rate as input variables, axial water flow through the vascular bundles and radial flows into and out of storage during the day/night cycle were determined. The predominantly nocturnal transpiration was coincident with increases in cell osmotic pressure and in titratable acid of the leaf chlorenchyma. In the outer layers of the chlorenchyma, water potential was most negative at the beginning of the night when transpiration was maximum, while the water-storage parenchyma reached its minimal water potential 9 h later. The roots plus stem contributed 7% and the leaves contributed 50% to the total water flow during maximal transpiration; peak water flow from the soil to the roots occurred at dawn and was only 58% of the maximal transpiration rate. Over each 24-h period, 39% of the water lost from the plant was derived from storage, with flow into storage occurring mainly during the daytime. Simulations showed that the acid accumulation rhythm of CAM had little impact on water uptake from the soil under the conditions employed. In the outer chlorenchyma, water potential and water flows were more sensitive to the day/night changes in transpiration than in osmotic pressure. Nevertheless, cell osmotic pressure had a large influence on turgor pressure in this tissue and determined the extent to which storage was recharged during the latter part of the night.  相似文献   

19.
We investigated the extent to which plant water and nutrient status are affected by intraspecific competition intensity and microsite quality in a monodominant tussock grassland. Leaf gas exchange and stable isotope measurements were used to assess the water relations of Stipa tenacissima tussocks growing along a gradient of plant cover and soil depth in a semi-arid catchment of Southeast Spain. Stomatal conductance and photosynthetic rate decreased with increasing intensity of competition during the wet growing season, leading to foliar δ 18O and δ 13C enrichment. A high potential for runoff interception by upslope neighbours exerted strong detrimental effects on the water and phosphorus status of downslope S. tenacissima tussocks. Foliar δ 15N values became more enriched with increasing soil depth. Multiple stepwise regression showed that competition potential and/or rhizosphere soil depth accounted for large proportions of variance in foliar δ 13C, δ 18O and δ 15N among target tussocks (57, 37 and 64%, respectively). The results presented here highlight the key role that spatial redistribution of resources (water and nutrients) by runoff plays in semi-arid ecosystems. It is concluded that combined measurement of δ 13C, δ 18O and nutrient concentrations in bulk leaf tissue can provide insight into the intensity of competitive interactions occurring in natural plant communities.  相似文献   

20.
以多伞阿魏(Ferula ferulaeoides)为研究对象,分别对其展叶期、成熟期、果期土壤含水量、pH、有机质、养分和叶片的净光合速率、蒸腾速率、水分利用率等光合指标的日变化进行比较研究。结果表明:土壤含水量、有机质、养分随着多伞阿魏生长呈下降趋势,而pH却有所上升,但变化幅度不大。在不同土壤深度上,土壤含水量、pH随着土层深度的加深逐渐升高,而土壤有机质、养分含量却随土层的加深逐渐减少。多伞阿魏3个时期的净光合速率日变化均为双峰曲线,在14:00出现明显的“光合午休”现象,日平均大小为展叶期>成熟期>果期;蒸腾速率日变化趋势表现为单峰曲线,在中午14:00达到最高值,日平均大小为展叶期>果期>成熟期;水分利用率日变化总体呈上升趋势,在14:00出现最低值,日平均大小为成熟期>果期>展叶期。通过对多伞阿魏净光合速率和蒸腾速率与影响因子的相关分析显示:在整个生长期气孔导度,光合有效辐射与净光合速率呈显著正相关性;光照强度与蒸腾速率有明显正相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号