首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li  Long  Yang  Sicun  Li  Xiaolin  Zhang  Fusuo  Christie  Peter 《Plant and Soil》1999,212(2):105-114
Interspecific complementary and competitive interactions between maize (Zea mays L. cv. Zhongdan No. 2) and faba bean (Vicia faba L. cv. Linxia Dacaidou) in maize/faba bean intercropping systems were assessed in two field experiments in Gansu province, northwestern China, plus a microplot experiment in one treatment of one of the field experiments in which root system partitions were used to determine interspecific root interactions. Intercropping effects were detected, with land equivalent ratio values of 1.21–1.23 based on total (grain+straw) yield and 1.13–1.34 based on grain yield. When two rows of maize were intercropped with two rows of faba bean, both total yield and grain yield of both crop species were significantly higher than those of sole maize and faba bean on an equivalent area basis. When two rows of pea (Pisum sativum L. cv. Beijing No. 5) were intercropped with two rows of faba bean, neither total yield nor grain yield of faba bean was higher than of sole faba bean on an equivalent area basis. Interspecific competition between maize and faba bean was relatively weak, with mean relative crowding coefficients of 0.99–1.02 for maize and 1.55–1.59 for faba bean. The microplot experiment in which partitions were placed between root systems showed a significant positive yield effect on maize when the root systems intermingled freely (no partition) or partly (400 mesh nylon net partition) compared with no interspecific root interaction (plastic sheet partition). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Mineral nutrition and growth of tropical maize as affected by soil acidity   总被引:11,自引:0,他引:11  
Soil constraints linked to low pH reduce grain yield in about 10% of the maize growing area in tropical developing countries. The aim of this research was to elucidate the reasons for this maize yield reduction on an oxisol of Guadeloupe. The field experiment had two treatments: the native non-limed soil (NLI, pH 4.5, 2.1 cmol Al kg–1, corresponding to 20% Al saturation), and the same soil limed 6 years prior to the experiment (LI, pH 5.3, 0 cmol Al kg–1). The soils were fertilized with P and N. The above-ground biomass, root biomass at flowering, grain yield and yield components, leaf area index (LAI), light interception, radiation-use-efficiency (RUE), P and N uptake, soil water storage, and soil mineral N were measured during the maize cycle. The allometric relationships between shoot N concentration, LAI and above-ground biomass in LI were similar to those reported for maize cropped in temperate regions, indicating that these relationships are also useful to describe maize growth on tropical soils without Al toxicity. In NLI, soil acidity severely affected leaf appearance, leaf size and consequently the LAI, which was reduced by 60% at flowering, although the RUE was not affected. Therefore, the reduction in the above-ground biomass (30% at flowering) and grain yield (47%) were due to the lower LAI and light interception. At flowering, the root/shoot ratio was 0.25 in NLI and 0.17 in LI, and the root biomass in NLI was reduced by 64% compared to LI. Nitrogen uptake was also reduced in NLI in spite of high soil N availability. Nevertheless, shoot N concentration vs aboveground biomass showed a typical decline in both treatments. In NLI, the shoot P concentration vs above-ground biomass relationship showed an increase in the early stages, indicating that P uptake and root-shoot competition for the absorbed P in the early plant stages controlled the establishment and the development of the leaf area.  相似文献   

3.
Brassica species are increasingly being used as cover crops to suppress soil-borne diseases in potato cropping systems. Experiments were conducted in controlled environments and in the field to evaluate the effects of cover crop root or shoot or a combination of root and shoot tissues on potato root and tuber health. In a lab assay we examined the extent to which volatile compounds released from tissues of two cover crop species, rye (Cereale secale L.) and oriental mustard (Brassica juncea L.), could inhibit mycelium growth of two important potato diseases, Rhizoctonia solani and Pythium ultimum. Twenty-four hours into the lab assay, volatile compounds from all residues suppressed fungal growth. After 48 h, marked suppression of hyphal growth continued in the presence of mustard residues but not in the presence of rye tissues or the control without tissues. A 75 L volume container experiment evaluated the effect of incorporating different quantities of mustard shoot and root tissues (none, comparable to field level and fourfold field level) into R. solani and P. ultimum infested soil on potato growth, root health and tuber disease. In the container study, incorporating mustard shoots at the highest dose increased potato yield by 54% and reduced disease rating to 2.3 compared to a severe rating of 4.4 in the control. In the field trial, potato growth, root health and tuber disease levels were evaluated in plots where disease management involved either incorporation of mustard or rye cover crop roots, shoots and whole plants (roots plus shoots) or standard farmer practice of a fumigated fallow as a control. White root tissue was used as a health indicator, and averaged 58 and 78% in the fumigated control and mustard cover crop treatments, respectively. The highest healthy root tissue status (91%) was recorded where whole plants of mustard were incorporated. In contrast to the visual assessment of root and tuber health, tuber yield in the field was not influenced by cover crop treatment. Across experiments, the incorporation of or exposure to whole mustard plants was consistently effective at suppressing soil-borne fungi and promoting healthy roots and tubers, especially at higher rates of biomass. Mustard should be managed so as to maximize incorporated biomass for effective biofumigation. Multipurpose management requiring removal of mustard shoots is incompatible with promoting potato rhizosphere health.  相似文献   

4.
Differences in tuber initiation, tuber growth and partitionof assimilate during development were investigated in six localsweet potato cultivars. Study of the quantitative morphogenesisof root types in the sweet potato root system indicated thattuber initiation was completed by 8 weeks after planting inmost cultivars and frustrated thereafter. Subsequent differencesin patterns of tuber development were not obviously relatedto final tuber yield. Thus, high yield resulted either froma short period of rapid tuber growth or a longer period of slowertuber growth. Maximum shoot growth was achieved by week 12 inall except one cultivar, and the cessation of shoot growth resultedin either increases or decreases in tuber growth rate or hadno affect on the rate of tuber growth (cv. A28/7). The partitionof assimilate to tubers at final harvest was the parameter mostclosely related to the yield of the six cultivars studied, butthere was some evidence that such partition was related to totaldry weight. It is suggested that limiting factors in sweet potatotuber yield, e.g. assimilate production and transport or capacityfor tuber growth varied with the cultivar studied.  相似文献   

5.
Bothriochloa ischaemum L. and Lespedeza davurica (Laxm.) Schindl. are two co-dominant species of great importance in reducing soil and water loss and maintaining the distinctive natural scenery of the semiarid Loess Plateau of China. Our aim was to determine the growth and interspecific competition between these species under water stress to facilitate the prediction of community succession and guide the selection of appropriate methods of conservation and use in the area. A pot experiment was designed to investigate the effects of water stress and competition on biomass production and allocation, relative competitive ability and water use efficiency of the two species. Bothriochloa ischaemum (a C4 perennial herbaceous grass) was planted in the same pot with L. davurica (a C3 perennial leguminous subshrub) at density ratios of 12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12. The response of the species to their mutual presence at the different ratios was evaluated at three levels of soil moisture (80%?±?5% field capacity, FC (HW), 60%?±?5% FC (MW) and 40%?±?5% FC (LW)). Indices of aggressivity (A), competitive ratio (CR) and relative yield totals (RYTs) were calculated from the dry shoot, root and total weight data. Water stress decreased the biomass production by both species whether in monoculture or mixture, but B. ischaemum was more sensitive to water deficit. Across moisture levels, the growth of L. davurica was more adversely affected by mixed planting. Bothriochloa ischaemum had significantly (P?<?0.05) smaller root:shoot ratios than L. davurica and the root mass of both species tended to increase relative to shoot mass as soil water deficit increased. The aggressivity (A), competitive ratio (CR) and relative yield totals (RYTs) of B. ischaemum were positive across treatments. Bothriochloa ischaemum had much higher CR under each water treatment, but water stress considerably reduced its relative CR while increasing that of L. davurica. The RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. Our results suggest that it is advantageous to grow the two species together to maximize biomass production. We recommend a mixture ratio of 8:4 of B. ischaemum to L. davurica because it gave significantly higher RYT and transpiration water use efficiency under deficit water conditions.  相似文献   

6.
Liedgens  Markus  Soldati  Alberto  Stamp  Peter 《Plant and Soil》2004,262(1-2):191-203
It has been demonstrated that the use of living mulches solves some of the environmental problems associated with the conventional cropping of maize (Zea mays L.). However, plant growth and yield are often reduced in such a cropping system. Since shoot competition between the main crop and the cover crop can be avoided by regular cutting of the cover crop, it was hypothesized that decreases in maize growth and yield in a living Italian ryegrass (Lolium multiflorum Lam.) mulch must be related to below ground interactions between the two species and that these may be traced back to the characteristics of their root systems. Two cropping systems, maize grown alone in bare soil (conventional cropping, BS) or together with a living Italian ryegrass mulch (LM), were studied in lysimeters (1.0 m2 surface area and 1.1 m depth) placed outdoors, near Zurich Switzerland, for a duration of three years. In the LM treatment a strip, 0.3 m wide, in the center of the plot around the maize row was free of grass. For comparison, an Italian ryegrass (RG) treatment, managed as the LM treatment but without maize plants, was also included in the study. Minirhizotrons (54 mm inner diameter) were horizontally installed at ten soil depths between 0.0 and 1.0 m, perpendicular to the orientation of the maize rows. The development of the maize shoot and the rooting patterns were observed non-destructively. LM strongly modified the maize crop by decreasing growth and duration of the leaf area, and thus biomass and grain yield at harvest by as much as 78 and 72%, respectively. Maximum root densities in the three treatments were observed around the time of maize anthesis. However, BS maize was unable to build up root densities similar to those observed in Italian ryegrass plots at the time of maize sowing. The root densities of the LM and the RG treatments were usually similar. The inability of the maize plants to establish a competitive root system in the LM limits the supply of nutrients and water and therefore reduces growth and yield. Improving the productivity of maize in living mulches will depend on the ability to achieve a better separation of the rooting volumes of the two species, so that specific steps to facilitate the main crop and control the living mulch can be taken.  相似文献   

7.
We were interested in the role of arbuscular mycorrhiza (AM) in the competition between plants of different sizes. A pot experiment of factorial design was established, in which AM root colonization and competition were used as treatments. Five-week-old Prunella vulgaris seedlings were chosen as target plants (i.e. plants whose response to competition was studied) and the following (13 replicates of each) were used as neighbours: (1) a large, 10-week-old P. vulgaris, (2) two P. vulgaris seedlings, and (3) a large, 10-week-old Fragaria vesca. In the experiment where small neighbours were grown together with small target plants, competition did not reduce target plant weight significantly, compared to the other two treatments. The competitive effects of large neighbours were significant, regardless of species (both older neighbours reduced the weights of target plants similarly), but there was a clear difference between intra- and interspecific competition when plants were mycorrhizal. In intraspecific competition with a large neighbour, the target plant shoot weight was reduced 24% when inoculated with AM. Thus, AM amplified rather than balanced intraspecific competition. In interspecific competition with old F. vesca, the shoot weights of target plants were 22% greater when inoculated with AM than when non-mycorrhizal. The results showed that, for given soil condition, AM might increase species diversity by increasing competitive intraspecific suppression and decreasing the interspecific suppression of small plants by larger neighbours.  相似文献   

8.
密植条件下种植方式对夏玉米群体根冠特性及产量的影响   总被引:14,自引:0,他引:14  
选用平展大穗型品种鲁单981(Ludan981,LD981)和紧凑中穗型品种鲁单818(Ludan818,LD818),在两种种植密度(60000和90000株/hm2)和两种种植方式(单株和双株)下,研究了密植及种植方式对夏玉米冠层和根系结构与功能以及子粒产量等的影响.研究发现,随种植密度增加,冠层垂直分布呈现干重比例权重上移的趋势,根系则呈现下移的趋势.密植条件下,LD981冠层对生长空间更为敏感,其根系对生长空间的竞争强于冠层,其群体产量限制因素是子粒库容;LD818根系对生长空间更为敏感,冠层对生长空间的竞争强于根系,其群体产量限制因素是单位面积穗数.60000株/hm2下,LD981的群体结构质量和功能较优,双株种植可缓解其冠层竞争,根、冠协调,表现增产;在90000株/hm2下,LD818的群体结构质量和功能较优,双株种植可缓解其根系竞争,部分改善冠层群体结构质量和功能,根、冠协调,表现增产.  相似文献   

9.
西北半干旱区深旋松耕作对马铃薯水分利用和产量的影响   总被引:6,自引:0,他引:6  
探明深旋松耕作技术(VRT)对西北黄土高原半干旱区马铃薯阶段性耗水、个体和群体生长状况、产量、水分利用效率和经济收益的影响,可为寻求抗旱增产、资源高效利用的耕作方法提供依据.本研究采用随机区组设计,于2016和2017年设置旋耕15 cm (TT)、深松40 cm (DLT)、深旋松耕40 cm (VRT) 3种耕作方式,测定马铃薯不同生育时期0~200 cm土层土壤贮水量、叶片SPAD值、叶面积指数、植株干物质量和产量等指标,计算阶段耗水量、水分利用效率(WUE)、商品率、商品产量、纯收益和新增收益等指标,探究深旋松耕作对马铃薯生产效率和经济效益的影响.结果表明: 与TT和DLT相比,VRT能显著促进马铃薯在盛花期和块茎膨大期的耗水,2016和2017年分别较DLT、TT增加了46.7、35.7和27.2、47.3 mm.由于VRT促进马铃薯耗水,叶片SPAD值、干物质量和叶面积指数均显著提高,证明它能促进马铃薯个体和群体发育.基于较高的个体和群体生长量,VRT的马铃薯块茎产量显著提高,分别在2016和2017年较DLT和TT增加了156.8%、47.8%和24.8%、41.0%,WUE相应地提高了92.3%、19.2%和18.9%、26.6%.深旋松耕作使马铃薯商品薯产量显著增加,纯收益和新增纯收益显著提高,在2016和2017年分别达到 12631.9、11019.1和29498.3、18245.5元·hm-2.深旋松耕作促进马铃薯花期和块茎膨大期耗水,使马铃薯叶片SPAD值、干物质量和叶面积指数显著提高,导致块茎产量和水分利用效率明显升高,并提高了商品薯产量和纯收益,是适宜于西北黄土高原半干旱区马铃薯种植的耕作技术.  相似文献   

10.
The effects of drought stress on the phosphorus (P) and potassium (K) uptake dynamics of summer maize (Zea mays L.) throughout the growth cycle were studied. Field trials were conducted under a completely randomized design with three field water capacity (FC) regimes: 75?% FC was well watered and considered to be the control, 55?% FC represented moderate stress (MS), and 35?% FC represented severe stress (SS). The water regimes were applied from the third leaf stage until maturity. Drought stress induced sharp decreases in total K and P uptake of maize organs at different developmental stages and, in particular, detrimentally affected the nutrient uptake capability of roots. SS caused more deleterious effect than MS on both total K and P uptake by plant organs. The results suggested maize plants differ in their ability to maintain nutrient uptake under drought stress, and it is highly dependent on the intensity and duration of drought stress and the developmental stage. The decrease in total K and P uptake caused by both MS and SS was accompanied by reduction in biomass production in drought-stressed tissues. The biomass allocation patterns in response to drought stress fluctuated strong mostly because of competitive changes in the shoot and roots at different stages, thus the root:shoot ratio increased at some stages and decreased at other stages. SS induced a dramatic reduction in the harvest index (HI), whereas MS slightly decreased HI. Thus, water limitation caused lower K and P uptake and HI.  相似文献   

11.
Segregation of roots is frequently observed in competing root systems. However, recently, intensified root growth in response to a neighbouring plant has been described in pot experiments [Gersani M, Brown J S, O'Brien E E, Maina G M and Abramsky Z 2001. J. Ecol. 89, 660–669]. This paper examines whether intense root growth towards a neighbour (aggregation) plays a role in competitive interactions between plant species from open nutrient-poor mid-European sand ecosystems. In a controlled field-competition experiment, root distribution patterns of intra- and interspecific pairs as well as single control plants of Corynephorus canescens, Festuca psammophila, Hieracium pilosella, Hypochoeris radicata and Conyza canadensis were investigated after one growing season. Under intraspecific competition plants tended to segregate their root systems, while under interspecific competition most species tended to aggregate roots towards their neighbours even at the expense of root development at the opposite competition-free side of the target. Preference of a root aggregation strategy over the occupation of competition-free soil in interspecific competition emphasizes the importance of contesting between individuals in relation to mere resource acquisition. It is suggested that in the presence of a competitor the plants might use root aggregation as a defensive reaction to maintain a strong competitive response and exclusive access to the resources of already occupied soil volumes.  相似文献   

12.
Although a handful of studies have shown how interspecific interactions may influence plant shoot to root ratios, the issue of how these interactions influence biomass partitioning among coexisting plant species remains largely unexplored. In this study, we determined whether a given plant species could induce other plant species to allocate relative biomass to each of four zones (aboveground, and three soil depth layers) in a different manner to what they would otherwise, and whether this may influence the nature of competitive or facilitative interactions amongst coexisting plant species. We used a glasshouse study in which mixtures and monocultures of ten grassland plant species were grown in cylindrical pots to determine the effects of plant species mixtures versus monocultures on the production of shoots and of roots of other species for each of three soil depths. Across all experiments, stimulation of production in mixtures was far less common than suppression of production. Different plant species shifted their allocation to shoots or roots at different depths, suggesting that interspecific interactions can either: (1) increase the ratio of deep to shallow roots, perhaps because competition reduces root growth in the uppermost part of the soil profile; or (2) decrease this ratio by reducing plant vigour to such an extent that the plant cannot produce roots that can reach deep enough to exploit resources at lower depths. Further, these results suggest that there are instances in which competition may have the potential to enforce resource partitioning between coexisting plant species by inducing different species to root at different depths to each other.  相似文献   

13.
Two experiments (winter and summer) were conducted in outdoor tanks using addition-series methods to evaluate the impact of specialized feeding by two biological control agents,Hydrellia pakistanaeDeonier andBagous hydrillaeO'Brien, on competitive interactions between hydrilla [Hydrilla verticillata(L.f.) Royle] and vallisneria (Vallisneria americanaMichx). Competitive abilities of each plant species were determined using the reciprocal-yield model of mean plant weight. In the absence of the biocontrol agents, intraspecific competition from hydrilla on itself was 8.3 times stronger than interspecific competition from vallisneria.Hydrellia pakistanaeinterfered with hydrilla canopy formation by removing as much as 80% of the plant biomass in the top 30 cm of the water column. Damage byH. pakistanaealso caused a 43% reduction in hydrilla tuber production during the winter experiment. Similarly,B. hydrillaecaused up to a 48% reduction in hydrilla plant weight in the summer experiment. Neither insect species damaged vallisneria. As a result, there were significant shifts in the competitive balance between hydrilla and vallisneria due to selective insect feedings. In the presence ofH. pakistanae, hydrilla intraspecific competition was nearly equal to interspecific competition from vallisneria, indicating that hydrilla had lost its competitive edge over vallisneria.Bagous hydrillaealso produced similar, but smaller, shifts in the relative competitive abilities of hydrilla and vallisneria. These results indicate that biological control agents can disrupt the competitive balance between plant species in favor of native species, thus adding another element to the weed biological control strategies.  相似文献   

14.
Interactions between root and shoot competition vary among species   总被引:9,自引:0,他引:9  
James F. Cahill  Jr. 《Oikos》2002,99(1):101-112
Understanding how the competition varies with productivity is essential for differentiating among alternative models of plant community organization. Prior attempts to explain shifts in root and shoot competition along gradients have generally assumed an additive interaction between the two competitive forms, using an experimental design which does not fully separate both above‐ and belowground processes. At the most basic level, few field studies have separated root and shoot competition, and we have limited knowledge about both the relative importance of these processes, and how they interact to affect plant growth in the field. Presented here are findings from a field study in which root and shoot competition were experimentally separated by using root exclusion tubes and neighbor tiebacks in an early successional community. Individuals of four species (Abutilon theophrasti, Amaranthus retroflexus, Rumex crispus, and Plantago lanceolata) were grown at two levels of fertilization with full competition, aboveground competition only, belowground competition only, or neither above‐ nor belowground competition. Competition was measured as competitive response, which is the natural log of the relative biomass of a target plant grown with competition compared to growth without competition. In contrast to predictions from current models of productivity‐competition relationships, but in agreement with other experimental studies, there was no change in the strengths or root, shoot, or total competition with a modest increase in productivity. Despite no effect of fertilization on the strength of competition, the form of interaction between root and shoot competition varied both as a function of species identity and fertilization. For both of the rosette forming species, the combined effects of root and shoot competition were less than predicted assuming no interaction (a “negative interaction”), with one species switching from a negative to an additive interaction with fertilization. The fact that fertilization caused a shift in the root‐shoot interaction, but not in the total strength of root and shoot competition, suggests that the root‐shoot interaction is itself a highly labile variable. If root‐shoot interactions are common in natural systems, then simply measuring the strength of one form of competition in no way provides any information about the overall importance of that competitive form to plant growth.  相似文献   

15.
Proliferation of lianas in canopy gaps can restrict tree regeneration in tropical forests through competition. Liana effects may differ between tree species, depending on tree requirements for above- and below-ground resources. We conducted an experiment in a shade house over 12 months to test the effect of light (7 and 27% external irradiance) on the competitive interactions between seedlings of one liana species and three tree species and the contribution of both above- and below-ground competition. Seedlings of the liana Acacia kamerunensis were grown with tree seedlings differing in shade tolerance: Nauclea diderrichii (Pioneer), Khaya anthotheca (Non-Pioneer Light Demander) and Garcinia afzelii (Non-Pioneer Shade Bearer). Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Both root and root–shoot competition significantly reduced relative growth rates in all three tree species. After one year, root–shoot competition reduced growth in biomass to 58% of those (all species) grown in no competition. The root competition treatment had a more important contribution in the effect of the liana on tree growth. Tree seedlings did not respond to competition with the liana by altering their patterns of biomass allocation. Although irradiance had a great effect on tree growth and allocation of biomass, the interaction between competition treatments and irradiance was not significant. Nauclea diderrichii, the tree species which responded most to the effects of competition, showed signs of being pot-bound, the stress of which may have augmented the competition effects. The understanding of the interaction of above- and below-ground competition between lianas and trees and its moderation by the light environment is important for a proper appreciation of the influence of lianas on tropical forest regeneration.  相似文献   

16.
研究外来入侵植物与本地植物种竞争对气候变暖的响应,对于预测未来气候变化背景下入侵植物的入侵趋势、理解其入侵机制以及筛选生态替代种具有重要的意义。以入侵我国的外来植物喜旱莲子草(Alternanthera philoxeroides)和本地植物种接骨草(Sambucus chinensis)为材料,通过两种植物单栽、纯栽和混栽,采用红外辐射加热器模拟增温,研究了两种植物竞争对模拟增温的响应。结果表明:(1)在模拟增温期间(2013年5–12月),增温组空气平均温度比不增温组提高了0.47℃,相对湿度降低了1.87%;(2)混栽的喜旱莲子草除根冠比与单栽无显著差异外,其余各生物量和根系形态指标均显著低于单栽喜旱莲子草;无竞争、种间竞争和种内竞争三种竞争间,接骨草除根冠比、细根与总根生物量比、比根长和比根表面积无显著差异外,其余指标均呈现无竞争>种间竞争>种内竞争的趋势;(3)无竞争、种间竞争和种内竞争三种条件下,喜旱莲子草各指标在增温和不增温处理间差异均不显著,而接骨草总生物量和根生物量在无竞争和种间竞争条件下增温处理均显著低于不增温处理,在种内竞争条件下则相反;(4)增温使接骨草的相对拥挤系数降低,接骨草对温度升高反应敏感,而喜旱莲子草则表现出一定的适应性。由此推测,在中度遮阴陆生生境中,接骨草有望成为喜旱莲子草生物替代控制的材料。  相似文献   

17.
Plant‐growth‐promoting rhizobacteria (PGPR) utilise amino acids exuded from plant root systems, but hitherto there have been no direct measurements of rhizosphere concentrations of the amino acid 1‐amino‐cyclopropane‐1‐carboxylic acid (ACC) following inoculation with PGPR containing the enzyme ACC deaminase. When introduced to the rhizosphere of two potato (Solanum tuberosum) cultivars (cv. Swift and cv. Nevsky), various ACC deaminase containing rhizobacteria (Achromobacter xylosoxidans Cm4, Pseudomonas oryzihabitans Ep4 and Variovorax paradoxus 5C‐2) not only decreased rhizosphere ACC concentrations but also decreased concentrations of several proteinogenic amino acids (glutamic acid, histidine, isoleucine, leucine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine). These effects were not always correlated with the ability of the bacteria to metabolise these compounds in vitro, suggesting bacterial mediation of root amino acid exudation. All rhizobacteria showed similar root colonisation following inoculation of sand cultures, thus species differences in amino acid utilisation profiles apparently did not confer any selective advantage in the potato rhizosphere. Rhizobacterial inoculation increased root biomass (by up to 50%) and tuber yield (by up to 40%) in pot trials, and tuber yield (by up to 27%) in field experiments, especially when plants were grown under water‐limited conditions. Nevertheless, inoculated and control plants showed similar leaf water relations, indicating that alternative mechanisms (regulation of phytohormone balance) were responsible for growth promotion. Rhizobacteria generally increased tuber number more than individual tuber weight, suggesting that accelerated vegetative development was responsible for increased yield.  相似文献   

18.
两种光强下木质藤本与树木幼苗的竞争关系   总被引:5,自引:1,他引:5       下载免费PDF全文
 为了探讨木质藤本和树木幼苗的相互作用关系,对两种光强(4%和35%的光强)、4种竞争处理下(全竞争、地上竞争、地下竞争和无竞争),一种 需光木质藤本(刺果藤(Byttneria grandifolia))和3个树种(耐荫种:五桠果木姜子(Litsea dilleniifolia)和绒毛番龙眼(Pometia tomentosa);需光种:羊蹄甲(Bauhinia variegata))幼苗的地上部分和地下部分的竞争关系进行了研究。结果表明:木质藤本的竞争显著影响 着3种树木幼苗的光合能力、形态特征和生长,但生长环境的不同光强影响地上部分竞争和地下部分竞争的相对强度。在低光下,地上部分竞争 比地下部分竞争对3种树木幼苗的相对生长速率(Relative growth rate,RGR)和光合能力造成更大的影响;而高光下,地下竞争对树木幼苗的 生长有更强的抑制作用。不同的竞争处理和光强对树木幼苗的生物量积累造成显著的影响。光强对3种树种的比叶面积(Specific leaf area, SLA)和叶面积比(Leaf area ratio,LAR)有显著的抑制作用,但竞争只对需光的羊蹄甲的SLA和LAR有显著影响。不同的光照和竞争处理之间, 同种植物表现出不同的表型特征。由于竞争的影响,苗木在形态上较为矮小、叶片数目较少、叶面积减小,但是长细比改变较少 。  相似文献   

19.
自然界的氮素释放总是呈现出空间和时间上的异质性,但关于异质性氮释放对于入侵植物和本地植物种间关系影响的研究相对较少。将入侵植物空心莲子草(Alternanthera philoxeroides)和同属本地植物莲子草(Alternanthera sessilis)分别进行单种种植(12株,无种间竞争)和混种种植(每种6株,有种间竞争),模拟大气氮湿沉降设置由两种不同施氮总量(15g N m~(-2)a~(-1)和30g N m~(-2)a~(-1))和两种不同施氮频率(每5天1次和每15天1次)交叉组成的4种施氮处理,并以不施氮为对照。施氮总量的增加显著促进了两种植物的生长,但对两种植物的种间竞争关系没有显著影响。施氮频率对两种植物的生长以及种间竞争关系都没有显著影响。两种植物在面对竞争时表现出不同的生物量分配策略,空心莲子草将更多的生物量分配到茎,而莲子草将更多的生物量分配到根。在全球变化的背景下,大气氮湿沉降可能会改变两种植物的种群结构和动态,但可能对这两种植物的种间关系影响较小。  相似文献   

20.
We studied competitive interactions among three species (Corynephorus canescens, Hieracium pilosella and Carex arenaria) of different early successional stages on sand dunes. Our study focused on the influence of competition and water availability on biomass allocation patterns and the plasticity of root responses. Plants were grown for one growing season in a simple additive (target–neighbour) design under low or ambient water supply. Overall competition intensity (e.g., above–and below–ground), as well as root competition alone, were compared using control plants grown without competitors. Our results show high competition intensity leading to an average target plant biomass reduction of 56 relative to controls. Competition was mostly below–ground. With increasing water availability, the competitive effect of H. pilosella on both of the other species decreased significantly. All other tested species combinations were not influenced by water availability. Soil moisture seemed to be a key factor determining the plasticity of root responses. Under limited water availability, strong competitors caused a significant decrease of response ratio (lnRR) based on root: shoot ratios for H. pilosella and C. arenaria and a decrease in lnRR based on specific root length (SRL) for C. arenaria. Under sufficient water supply, however, there was no significant effect of competition on root: shoot ratios for any of the species and only C. arenaria in competition with C. canescens showed a lower lnRR based on SRL. These water–related, species–specific changes of root morphology and allocation patterns may point to an adaptive response to competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号