首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of girdling on oxidative damage, antioxidant enzyme activity, antioxidant metabolites and proline (Pro) were studied in leaves arising from different shoot types of potted 2-year-old ‘Loretina’ mandarin (Citrus reticulata Blanco) trees during the spring flush period. Girdling increased malonyldialdehyde (MDA) and basal chlorophyll (Chl) a fluorescence (Fo) in young leaves 30 days after girdling but not in the mature leaves (ML) suggesting a disruption of photosynthetic apparatus and oxidative damage in young leaves. This phenomenon was accompanied by increasing levels of Pro. Paralleling these changes, an increase of all antioxidant enzyme activities occurred in leaves from vegetative (VG) and multiflowered leafy shoots (MLY) of girdled trees. Similarly, in ML of girdled trees, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) activity also increased. However, dehydroascorbate reductase (DHAR) activity decreased and superoxide dismutase (SOD) activity remained unchanged. Total leaf carbohydrate content and starch also increased as a result of girdling in all shoot types. Whilst soluble sugars increased markedly in young leaves, they increased only slightly in ML. In conclusion, this study provides evidence that girdling gives rise to oxidative damage in Citrus during carbohydrate accumulation, triggering enzymatic and non-enzymatic defence mechanisms.  相似文献   

2.
The work evaluated the role of enzymatic and non-enzymatic antioxidants in cashew (Anacardium occidentale) leaves under 0, 50, 100, 150 and 200 mM NaCl. Salt stress increased protein oxidation and decreased the lipid peroxidation, indicating that lipids are less susceptible to oxidative damage. The superoxide dismutase (SOD) activity was not changed, ascorbate peroxidase (APX) activity steadily decreased while the catalase (CAT) activity strongly increased with the increasing NaCl concentration. High salinity also induced alterations in the ascorbate (AsA) and glutathione (GSH) redox state. The salt resistance in cashew may be associated with maintaining of SOD activity and upregulation of CAT activity in concert with the AsA and GSH antioxidants.  相似文献   

3.
Effect of photoinhibition of sorghum leaves and isolated chloroplasts on chlorophyll fluorescence, peroxidation of thylakoid lipids and activity of antioxidant enzymes were studied. Photoinhibition of intact leaves and isolated chloroplasts decreased Fv/Fm ratio and qP, while qN increased. Photoinhibitory damage was more at 5 degrees C than at 30 degrees or 50 degrees C. Peroxidation of thylakoid lipids was 5 times greater when photoinhibited at 50 degrees C compared to control. Photoinhibition of chloroplasts under low oxygen condition or when supplemented with anti-oxidants (beta-carotene, ascorbate and GSH) resulted in significantly less damage to photosynthesis (Fv/Fm ratio) and peroxidation level. Photoinhibition also resulted in many fold increase in the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) and decrease in catalase. Data presented here suggest that photoinhibition resulted in production of oxygen radicals and photoinhibition of chloroplasts in the presence of low oxygen level or when supplemented with antioxidants decreased the damage to Fv/Fm ratio and peroxidation level to a great extent since former prevented the formation of oxygen radicals and later could scavenge the oxygen radicals thus the protection. Increase activity of SOD and APX may also be to metabolise the oxygen radicals produced during photoinhibition treatment, thereby, protecting the seedlings against photooxidative damage.  相似文献   

4.
Leaves of maize (Zea mays L.) seedlings were supplied with different concentrations of abscisic acid (ABA). Its effects on the levels of superoxide radical (O(2)(-)), hydrogen peroxide (H(2)O(2)) and the content of catalytic Fe, the activities of several antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), the contents of several non-enzymatic antioxidants such as ascorbate (ASC), reduced glutathione (GSH), alpha-tocopherol (alpha-TOC) and carotenoid (CAR), and the degrees of the oxidative damage to the membrane lipids and proteins were examined. Treatment with 10 and 100 microM ABA significantly increased the levels of O(2)(-) and H(2)O(2), followed by an increase in activities of SOD, CAT, APX and GR, and the contents of ASC, GSH, alpha-TOC and CAR in a dose- and time-dependent pattern in leaves of maize seedlings. An oxidative damage expressed as lipid peroxidation, protein oxidation, and plasma membrane leakage did not occur except for a slight increase with 100 microM ABA treatment for 24 h. Treatment with 1,000 microM ABA led to a more abundant generation of O(2)(-) and H(2)O(2) and a significant increase in the content of catalytic Fe, which is critical for H(2)O(2)-dependent hydroxyl radical production. The activities of these antioxidative enzymes and the contents of alpha-TOC and CAR were still maintained at a higher level, but no longer further enhanced when compared with the treatment of 100 microM ABA. The contents of ASC and GSH had no changes in leaves treated with 1,000 microM ABA. These results indicate that treatment with low concentrations of ABA (10 to 100 microM) induced an antioxidative defence response against oxidative damage, but a high concentration of ABA (1,000 microM) induced an excessive generation of AOS and led to an oxidative damage in plant cells.  相似文献   

5.
The non-enzymatic repair of DNA oxidative damage can occur in a purely chemical system, but data show that it might also occur in cells. Human hepatoma cells (SMMC-7721) and human hepatocyte cells (LO2) were treated with 200 μM H2O2 for 30 min to induce oxidative DNA damage quantified by amount of 8-OHdG and degree of DNA strand breaks, without inducing enzymatic repair. The dynamics of enzymatic repair activity quantified by unscheduled DNA synthesis, within 30 min after removal of H2O2 enzymatic repair mechanism has not been initiated. However, pre-incubation with low micromolar level polyphenols, quercetin or rutin can significantly attenuate DNA damage in both cell lines, indicating that the polyphenols did not work through an enzymatic mechanism. Unscheduled DNA synthesis after removal of H2O2 was also markedly decreased by quercetin and rutin. Combined with our previous studies of fast reaction chemistry, the inhibitory effect of polyphenols have to be assigned to non-enzymatic repair mechanism rather than to enzymatic repair mechanism or antioxidant mechanism.  相似文献   

6.
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (AL) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2–3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in AL cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

7.
Arsenic induces oxidative DNA damage in mammalian cells   总被引:3,自引:0,他引:3  
Although arsenic is a well-established human carcinogen, the underlying carcinogenic mechanism(s) is not known. Using the human-hamster hybrid (A(L)) cell mutagenic assay that is sensitive in detecting mutagens that induce predominately multilocus deletions, we showed previously that arsenite is indeed a potent gene and chromosomal mutagen and that oxyradicals may be involved in the mutagenic process. In the present study, the effects of free radical scavenging enzymes on the cytotoxic and mutagenic potential of arsenic were examined using the AL cells. Concurrent treatment of cells with either superoxide dismutase or catalase reduced both the cytotoxicity and mutagenicity of arsenite by an average of 2-3 fold, respectively. Using immunoperoxidase staining with a monoclonal antibody specific for 8-hydroxy-2'-deoxyguanosine (8-OHdG), we demonstrated that arsenic induced oxidative DNA damage in A(L) cells. This induction was significantly reduced in the presence of the antioxidant enzymes. Furthermore, reducing the intracellular levels of non-protein sulfhydryls (mainly glutathione) using buthionine S-R-Sulfoximine increased the total mutant yield by more than 3-fold as well as the proportion of mutants with multilocus deletions. Taken together, our data provide clear evidence that reactive oxygen species play an important causal role in the genotoxicity of arsenic in mammalian cells.  相似文献   

8.
It has been reported that exercise induces oxidative stress and causes adaptations in antioxidant defences. The aim of this study was to determine the adaptations of lymphocytes to the oxidative stress induced by an exhaustive exercise. Nine voluntary male subjects participated in the study. The exercise was a cycling mountain stage (171.8 km), and the cyclists took a mean of 283 min to complete it. Blood samples were taken the morning of the cycling stage day, after overnight fasting, and 3 h after finishing the stage. We determined the blood glutathione redox status (GSSG/GSH), lymphocyte antioxidant enzyme activities and superoxide dismutase (SOD) levels; the plasma and lymphocyte vitamin E levels; the serum lactate dehydrogenase (LDH) and creatine kinase (CK) activities and urate levels; the plasma carotene and malonaldehyde (MDA) levels; and the lymphocyte carbonyl index. The cycling stage induced significant increases in blood-oxidized (glutathione/GSSG), plasma MDA and serum urate levels. The exercise also produced increases in CK and LDH serum activities. The mountain cycling stage induced significant increases in lymphocyte vitamin E levels, glutathione peroxidase and glutathione reductase activities as well as increased SOD activity and protein levels. The protein carbonyl levels increased significantly in lymphocytes after the stage. In conclusion, in spite of increasing antioxidant defences in response to the oxidative stress induced by the exhaustive exercise, lymphocyte oxidative damage was produced after the stage as demonstrated by the increased carbonyl index even in very well trained athletes.  相似文献   

9.
Tissue accumulation of homocysteine occurs in classical homocystinuria, a metabolic disease characterized biochemically by cystathionine β-synthase deficiency. Vascular manifestations such as myocardial infarction, cerebral thrombosis, hepatic steatosis, and pulmonary embolism are common in this disease and poorly understood. In this study, we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress (thiobarbituric acid-reactive substances, protein carbonyl content, 2',7'-dichlorofluorescein fluorescence assay, and total radical-trapping antioxidant potent) and activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in the rat lung. Reduced glutathione content and glucose 6-phosphate dehydrogenase activity, as well as nitrite levels, were also evaluated. Wistar rats received daily subcutaneous injections of Hcy (0.3-0.6 μmol/g body weight) from the 6th to the 28th days-of-age and the control group received saline. One and 12 h after the last injection, rats were killed and the lungs collected. Hyperhomocysteinemia increased lipid peroxidation and oxidative damage to protein, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in the lung of rats, characterizing a reliable oxidative stress. In contrast, this amino acid did not alter nitrite levels. Our findings showed a consistent profile of oxidative stress in the lung of rats, elicited by homocysteine, which could explain, at least in part, the mechanisms involved in the lung damage that is present in some homocystinuric patients.  相似文献   

10.
Cadmium-induced oxidative damage in rice leaves is reduced by polyamines   总被引:4,自引:0,他引:4  
The protective effect of polyamines against Cd toxicity of rice (Oryza sativa) leaves was investigated. Cd toxicity to rice leaves was determined by the decrease in protein content. CdCl2 treatment results in (1) increased Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in ascorbic acid (ASC) and reduced glutathione (GSH) contents, and (5) increase in the activities of antioxidative enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). Spermidine (Spd) and spermine (Spm), but not putrescine (Put), were effective in reducing CdCl2-induced toxicity. Spd and Spm prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of ASC and GSH, and increase in the activities of antioxidative enzymes. Spd and Spm pretreatments resulted in a decrease in Cd content when compared with H2O pretreatment, indicating that Spd and Spm may reduce the uptake of Cd. Results of the present study suggest that Spd and Spm are able to protect Cd-induced oxidative damage and this protection is most likely related to the avoidance of H2O2 generation and the reduction of Cd uptake.  相似文献   

11.
The ubiquitin/proteasome pathway plays an essential role in protein turnover in vivo, and contributes to removal of oxidatively damaged proteins. We examined the effects of proteasome inhibition on viability, oxidative damage and antioxidant defences in NT-2 and SK-N-MC cell lines. The selective proteasome inhibitor, lactacystin (1 microM) caused little loss of viability, but led to significant increases in levels of oxidative protein damage (measured as protein carbonyls), ubiquitinated proteins, lipid peroxidation and 3-nitrotyrosine, a biomarker of the attack of reactive nitrogen species (such as peroxynitrite, ONOO(-)) upon proteins. Higher levels (25 microM) of lactacystin did not further increase the levels of carbonyls, lipid peroxidation, 3-nitrotyrosine, or ubiquitinated proteins, but produced increases in the levels of 8-hydroxyguanine (a biomarker of oxidative DNA damage) and falls in levels of GSH. Lactacystin (25 microM) caused loss of viability, apparently by apoptosis, and also increased production of nitric oxide (NO.) (measured as levels of NO2- plus NO3-) by the cells; this was inhibited by N-nitro-L-arginine methyl ester (L-NAME), which also decreased cell death induced by 25 microM lactacystin and decreased levels of 3-nitrotyrosine. The NO. production appeared to involve nNOS; iNOS or eNOS were not detectable in either cell type. Another proteasome inhibitor, epoxomicin, had similar effects.  相似文献   

12.
Disks excised from leaves and intact 7-day-old plants of winter wheat (Triticum aestivum L., cv. Mironovskaya 808), winter rye (Secale cereale L., cv. Estafeta Tatarstana), maize (Zea mays L., hybrid Kollektivnyi 172 MV), and common wild oat (Avena fatua L.) were treated with the xenobiotic (herbicide Granstar, 3–300 μg/l), and the effects of short-term action (up to 3 h) and long-term aftereffect (up to 3 days) on physiological and biochemical indices related to oxidative stress development were studied. Changes (predominantly toward increase) of lipid peroxidation intensity, superoxide anion-radical (O2·−)generation, total antioxidant activity, and antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase) under the action of the herbicide were observed. Plant responses depended nonlinearly on the herbicide concentration and duration of treatment. Winter wheat and winter rye turned out to be more tolerant, and maize and common wild oat were less tolerant. It is concluded that oxidative stress is the basis for cereal plant responses to the herbicide action.  相似文献   

13.
14.
  1. Download : Download high-res image (96KB)
  2. Download : Download full-size image
  相似文献   

15.
Pathogenic infection and the oxidative defences in plant apoplast   总被引:4,自引:0,他引:4  
Summary The structural and functional continuum of the plant apoplast is the first site of contact with a pathogen and plays a crucial role in initiation and coordination of many defence responses. In this paper, we present an overview of the involvement of the plant apoplast in plant-pathogen interactions. The process of infection of French bean (Phaseolus vulgaris L.) plants byColletotrichum lindemuthianum is analysed. The ultrastructural features of plant defence responses to fungal infection are then compared with those observed in plants or cell suspensions treated with various elicitors. Changes in cell walls and in whole plant cells responding to infection seem to be highly similar in all systems used. Model systems of French bean and white lupin (Lupinus albus L.) are then utilised to provide some biochemical characteristics of oxidative reactions in the apoplast evoked by elicitor treatment. The species specificity of various mechanisms generating reactive oxygen species is discussed, and some details of pH-dependent H2O2-generating activity of peroxidases are demonstrated. As its exocellular nature is an important feature of the oxidative burst, the major consequence of this event, i.e., the oxidative cross-linking of wall components during the papilla formation and strengthening of the walls, is analysed. Finally, the possible involvement of other wall-associated and developmentally regulated H2O2-generating mechanisms, like amine and oxalate oxidases, in plant defence is demonstrated. It is concluded that under stress conditions, such apoplastic mechanisms might be employed to increase plants' chances of survival.Abbreviations HR hypersensitive response - IWF intercellular washing fluid - OxO oxalate oxidase - ROS reactive oxygen species - YE elicitor preparation from yeast cell walls  相似文献   

16.
The influence long-term soil drought and potato plants treatment by synthetic analog of cytokinin--polystimulin K on intensity of lipid peroxidation processes and enzymatic antioxidative activity have been investigated. It has been found, that the drought induced the shift of prooxidative-antioxidative balance in respect of lipid peroxidation activation in the potato leaves. It was accompanied by the increase of the ethylene output, membrane permeability, as well as decrease of the lipids content and increase in the enzymatic antioxidative activity (catalase and peroxidase). It is shown, that the intensity of peroxidation processes was higher in budding phases, while enzymatic antioxidative activity was higher in flowering phases in potato plants. Plant exogenous treatment by polystimulin K induced both the decrease in peroxidate oxidation processes, stabilization of catalase and peroxidase activity, as well as the increase in potato resistance to drought.  相似文献   

17.
18.
3-Nitrobenzanthrone (3-NBA) is an extremely potent mutagen in diesel exhaust. It is a lung carcinogen to rats, and therefore a suspected carcinogen to human. In order to clarify the mechanism of carcinogenicity of 3-NBA, we investigated oxidative DNA damage by N-hydroxy-3-aminobenzanthrone (N-OH-ABA), a metabolite of 3-NBA, using 32P-labeled DNA fragments from the human p53 tumor-suppressor gene. N-OH-ABA caused Cu(II)-mediated DNA damage, and endogenous reductant NADH dramatically enhanced this process. Catalase and a Cu(I)-specific chelator decreased DNA damage, suggesting the involvement of hydrogen peroxide (H2O2) and Cu(I). N-OH-ABA induced DNA damage at cytosine and guanine residues of ACG sequence complementary to codon 273, a well-known hot spot of the p53 gene. N-OH-ABA dose dependently induced 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in the presence of Cu(II) and NADH. Treatment with N-OH-ABA increased amounts of 8-oxodG in HL-60 cells compared to the H2O2-resistant clone HP100, supporting the involvement of H2O2. The present study has demonstrated that the N-hydroxy metabolite of 3-NBA induces oxidative DNA damage through H2O2 in both a cell-free system and cultured human cells. We conclude that oxidative DNA damage may play an important role in the carcinogenic process of 3-NBA in addition to previously reported DNA adduct formation.  相似文献   

19.
Ali MB  Yu KW  Hahn EJ  Paek KY 《Plant cell reports》2006,25(6):613-620
The effects of methyl jasmonate (MJ) and salicylic acid (SA) on changes of the activities of major antioxidant enzymes, superoxide anion accumulation (O2 ), ascorbate, total glutathione (TG), malondialdehyde (MDA) content and ginsenoside accumulation were investigated in ginseng roots (Panax ginseng L.) in 4 l (working volume) air lift bioreactors. Single treatment of 200 μM MJ and SA to P. ginseng roots enhanced ginsenoside accumulation compared to the control and harvested 3, 5, 7 and 9 days after treatment. MJ and SA treatment induced an oxidative stress in P. ginseng roots, as shown by an increase in lipid peroxidation due to rise in O2 accumulation. Activity of superoxide dismutase (SOD) was inhibited in MJ-treated roots, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), SOD, guaiacol peroxidase (G-POD), glutathione peroxidase (GPx) and glutathione reductase (GR) were induced in SA-treated roots. A strong decrease in the activity of catalase (CAT) was obtained in both MJ- and SA-treated roots. Activities of ascorbate peroxidase (APX) and glutathione S transferase (GST) were higher in MJ than SA while the contents of reduced ascorbate (ASC), redox state (ASC/(ASC+DHA)) and TG were higher in SA- than MJ-treated roots while oxidized ascorbate (DHA) decreased in both cases. The result of these analyses suggests that roots are better protected against the O2 stress, thus mitigating MJ and SA stress. The information obtained in this work is useful for efficient large-scale production of ginsenoside by plant-root cultures.  相似文献   

20.
Fathead minnows Pimephales promelas maintained at 25° C for 6 h had significantly higher superoxide dismutase (SOD) activity than fish maintained at 7 or 32° C, but hypoxic conditions (3 mg l?1 O2) over the same time period did not affect SOD activity. Fish in better body condition (length‐adjusted mass) had higher SOD activity. In a separate experiment, P. promelas maintained at three water temperatures (7, 23 and 32° C) for 31 days did not differ in liver acrolein, a biomarker of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号