首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
RAS genes are the most commonly mutated in human cancers and play critical roles in tumor initiation, progression, and drug resistance. Identification of targets that block RAS signaling is pivotal to develop therapies for RAS-related cancer. As RAS translocation to the plasma membrane (PM) is essential for its effective signal transduction, we devised a high-content screening assay to search for genes regulating KRAS membrane association. We found that the tyrosine phosphatase PTPN2 regulates the plasma membrane localization of KRAS. Knockdown of PTPN2 reduced the proliferation and promoted apoptosis in KRAS-dependent cancer cells, but not in KRAS-independent cells. Mechanistically, PTPN2 negatively regulates tyrosine phosphorylation of KRAS, which, in turn, affects the activation KRAS and its downstream signaling. Consistently, analysis of the TCGA database demonstrates that high expression of PTPN2 is significantly associated with poor prognosis of patients with KRAS-mutant pancreatic adenocarcinoma. These results indicate that PTPN2 is a key regulator of KRAS and may serve as a new target for therapy of KRAS-driven cancer.  相似文献   

2.
Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf–MEK–ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras–ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis.  相似文献   

3.
The enriched PCR widely used for detection of mutant K-RAS in either tumor tissues or circulating DNA was modified so that abundant wild-type K-RAS alleles are cleaved prior to PCR. We took advantage of an AluI recognition site located immediately upstream of the K-RAS codon 12. The site was reconstituted upon DNA denaturation followed by annealing with a ‘stencil’, a 16-bp synthetic oligonucleotide complementary to the wild-type sequence. As opposed to normal K-RAS, the mutant allele forms, upon annealing with the stencil, a mismatch at the codon 12 which lies within the AluI enzyme binding site and partially inhibits its activity. The mismatch also lowers the melting temperature of the stencil-mutant K-RAS double helix as compared to stencil–wild-type duplex, so that only the latter is double stranded and selectively digested by AluI at elevated temperatures. The proposed method of stencil-aided mutation analysis (SAMA) based on selective pre-PCR elimination of wild-type sequences can be highly advantageous for detection of mutant K-RAS due to: (i) an enhanced sensitivity because of reduced competition with a great excess of normal K-RAS, and (ii) a decrease in a number of false-positive results from Taq polymerase errors. Application of SAMA for generalized detection of DNA mutations is discussed.  相似文献   

4.
KRAS is the most commonly mutated oncogene in human cancers and is associated with poor prognosis and drug resistance. Let-7 is a family of tumor suppressor microRNAs that are frequently suppressed in solid tumors, where KRAS mutations are highly prevalent. In this study, we investigated the potential use of let-7 as a chemosensitizer. We found that let-7b repletion selectively sensitized KRAS mutant tumor cells to the cytotoxicity of paclitaxel and gemcitabine. Transfection of let-7b mimic downregulated the expression of mutant but not wild-type KRAS. Combination of let-7b mimic with paclitaxel or gemcitabine diminished MEK/ERK and PI3K/AKT signaling concurrently, triggered the onset of apoptosis, and reverted the epithelial-mesenchymal transition in KRAS mutant tumor cells. In addition, let-7b repletion downregulated the expression of β-tubulin III and ribonucleotide reductase subunit M2, two proteins known to mediate tumor resistance to paclitaxel and gemcitabine, respectively. Let-7 may represent a new class of chemosensitizer for the treatment of KRAS mutant tumors.  相似文献   

5.

Background

Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS), and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.

Methods

Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS), and BRAF mutations using polymerase chain reaction-based DNA sequencing.

Results

PIK3CA mutations were found in 54 (11%) of 504 patients tested; KRAS in 69 (19%) of 367; NRAS in 19 (8%) of 225; and BRAF in 31 (9%) of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%), uterine (7/28, 25%), breast (6/29, 21%), and colorectal cancers (18/105, 17%); KRAS in pancreatic (5/9, 56%), colorectal (49/97, 51%), and uterine cancers (3/20, 15%); NRAS in melanoma (12/40, 30%), and uterine cancer (2/11, 18%); BRAF in melanoma (23/52, 44%), and colorectal cancer (5/88, 6%). Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wt)PIK3CA (p = 0.001). In total, RAS (KRAS, NRAS) or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001). PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001) and in 20% of patients with RAS (KRAS, NRAS) or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS) or wtBRAF (p = 0.001).

Conclusions

PIK3CA, RAS (KRAS, NRAS), and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS) and BRAF mutations.  相似文献   

6.
Mutation of RAS genes is a critical event in the pathogenesis of different human tumors and in some developmental disorders. Here we present an arabinose-derived bicyclic compound displaying selective cytotoxicity in human colorectal cancer cells expressing K-RasG13D, that shows high intrinsic nucleotide exchange rate. We characterize binding of bicyclic compounds by docking and NMR experiments and their inhibitory activity on GEF-mediated nucleotide exchange on wild-type and mutant Ras proteins. We demonstrate that the in vitro inhibition of Ras nucleotide exchange depends on the molar ratio between Ras and its GEF activator, suggesting that the observed in vivo selective effect may depend on biochemical parameters and actual intracellular concentration of the Ras protein and its regulators.  相似文献   

7.
Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.  相似文献   

8.
Oncogenic RAS is a critical driver for the initiation and progression of several types of cancers. However, effective therapeutic strategies by targeting RAS, in particular RASG12D and RASG12V, and associated downstream pathways have been so far unsuccessful. Treatment of oncogenic RAS-ravaged cancer patients remains a currently unmet clinical need. Consistent with a major role in cancer metabolism, oncogenic RAS activation elevates both reactive oxygen species (ROS)-generating NADPH oxidase (NOX) activity and ROS-scavenging glutathione biosynthesis. At a certain threshold, the heightened oxidative stress and antioxidant capability achieve a higher level of redox balance, on which cancer cells depend to gain a selective advantage on survival and proliferation. However, this prominent metabolic feature may irrevocably render cancer cells vulnerable to concurrent inhibition of both NOX activity and glutathione biosynthesis, which may be exploited as a novel therapeutic strategy. In this report, we test this hypothesis by treating the HRASG12V-transformed ovarian epithelial cells, mutant KRAS-harboring pancreatic and colon cancer cells of mouse and human origins, as well as cancer xenografts, with diphenyleneiodonium (DPI) and buthionine sulfoximine (BSO) combination, which inhibit NOX activity and glutathione biosynthesis, respectively. Our results demonstrate that concomitant targeting of NOX and glutathione biosynthesis induces a highly potent lethality to cancer cells harboring oncogenic RAS. Therefore, our studies provide a novel strategy against RAS-bearing cancers that warrants further mechanistic and translational investigation.Subject terms: Chemotherapy, Oncogenes  相似文献   

9.
Phenylbutyl isoselenocyanate (ISC-4) is an Akt inhibitor with demonstrated preclinical efficacy against melanoma and colon cancer. In this study, we sought to improve the clinical utility of ISC-4 by identifying a synergistic combination with FDA-approved anti-cancer therapies, a relevant and appropriate disease setting for testing, and biomarkers of response. We tested the activity of ISC-4 and 19 FDA-approved anticancer agents, alone or in combination, against the SW480 and RKO human colon cancer cell lines. A synergistic interaction with cetuximab was identified and validated in a panel of additional colon cancer cell lines, as well as the kinetics of synergy. ISC-4 in combination with cetuximab synergistically reduced the viability of human colon cancer cells with wild-type but not mutant KRAS genes. Further analysis revealed that the combination therapy cooperatively decreased cell cycle progression, increased caspase-dependent apoptosis, and decreased phospho-Akt in responsive tumor cells. The synergism between ISC-4 and cetuximab was retained independently of acquired resistance to 5-FU in human colon cancer cells. The combination demonstrated synergistic anti-tumor effects in vivo without toxicity and in the face of resistance to 5-FU. These results suggest that combining ISC-4 and cetuximab should be explored in patients with 5-FU-resistant colon cancer harboring wild-type KRAS.  相似文献   

10.
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.K-RAS (KRAS) is a small, monomeric GTPase whose biological activity is specified by its nucleotide binding state. Multiple lines of evidence highlight the importance of KRAS in colorectal cancer (CRC).1 For example, activating missense mutations in KRAS, which lock the protein into the GTP-bound state, occur in 30% to 40% of CRCs and are strongly associated with poor prognosis (1, 2). Also, mutant KRAS negatively predicts responsiveness to anti-EGF receptor (EGFR) therapy (3).Early attempts to decipher the neoplastic consequences of mutant KRAS relied on overexpression studies. A drawback of these studies is their failure to simulate the genetic conditions present in human tumors, where there is often one wild-type (WT) and one mutant KRAS allele (1). More recently, KRAS mutant CRC cell lines have been engineered to selectively contain either the wild-type or the mutant KRAS allele (4), and a single mutant Kras allele has been activated in the intestine using genetically engineered mice (5). Detailed studies using these complementary approaches demonstrate a wide range of tumor-promoting effects of mutant KRAS (reviewed in Ref. 6). Much of what is known about mutant KRAS pertains to its ability to alter the behavior of a transformed cell in a cell autonomous manner. With the exception of increased tumor vascularity via increased tumor-derived VEGF expression (7, 8), non-cell autonomous effects of mutant KRAS have been much less studied.Exosomes are 30- to 100-nm secreted vesicles that have emerged as a novel mode of intercellular communication (9). We recently reported that exosomes purified from conditioned medium of mutant KRAS CRC cells contained higher levels of the EGFR ligand amphiregulin (AREG) and enhanced invasiveness of recipient cancer cells relative to exosomes from isogenically matched wild-type KRAS cells (10). These results prompted us to perform a comprehensive analysis of exosomes purified from these cells. Herein, we show that mutant KRAS induces many changes in exosomal protein composition. Notably, we show that (i) KRAS is contained within exosomes, (ii) exosomes can transfer mutant KRAS to cells expressing only wild-type KRAS, and (iii) mutant KRAS-containing exosomes enhance wild-type KRAS cell growth in collagen matrix and soft agar. These results have important implications for the progression of CRC tumors by providing a mechanism by which the tumor microenvironment may be influenced by non-cell autonomous signals released by mutant KRAS-expressing tumor cells.  相似文献   

11.
In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser69, confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr705) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.  相似文献   

12.
Metastatic colorectal cancer (mCRC) is frequently characterized by the presence of mutations of the KRAS oncogene, which are generally associated with a poor response to treatment with anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibodies. With the methods currently used, a case is classified as KRAS-mutated when approximately 20% of the cells bear an activating KRAS mutation. These considerations raise the question of whether cells with a mutated KRAS can be found in mCRC cases classified as KRAS wild-type when more sensitive methods are used. In addition, the issue arises of whether these mCRC cases with low proportion of KRAS-mutated cells could account at least in part for the therapeutic failure of anti-EGFR therapies that occur in 40–60% of cases classified as KRAS wild type. In this study, we compared the classical assays with a very sensitive test, a locked nucleic acid (LNA) polymerase chain reaction (PCR), capable of detecting KRAS-mutated alleles at extremely low frequency (detection sensitivity limit 0.25% mutated DNA/wild-type DNA). By analyzing a cohort of 213 mCRC patients for KRAS mutations, we found a 20.6% discordance between the sequencing/TheraScreen methods and the LNA-PCR. Indeed, 44 mCRC patients initially considered KRAS wild type were reclassified as KRAS mutated by using the LNA-PCR test. These patients were more numerous among individuals displaying a clinical failure to anti-EGFR therapies. Failure to respond to these biological treatments occurred even in the absence of mutations in other EGFR pathway components such as BRAF.  相似文献   

13.
Osteopontin (OPN) has been shown to promote colorectal cancer (CRC) progression; however, the mechanism of OPN‐induced CRC progression is largely unknown. In this study, we found that OPN overexpression led to enhanced anchorage‐independent growth, cell migration and invasion in KRAS gene mutant cells but to a lesser extent in KRAS wild‐type cells. OPN overexpression also induced PI3K signalling, expression of Snail and Matrix metallopeptidase 9 (MMP9), and suppressed the expression of E‐cadherin in KRAS mutant cells. In human CRC specimens, a high‐level expression of OPN significantly predicted poorer survival in CRC patients and OPN expression was positively correlated with MMP9 expression, and negatively correlated with E‐cadherin expression. Furthermore, we have found that 15 genes were co‐upregulated in OPN highly expression CRC and a list of candidate drugs that may have potential to reverse the secreted phosphoprotein 1 (SPP1) gene signature by connectivity mapping. In summary, OPN is a potential prognostic indicator and therapeutic target for colon cancer.  相似文献   

14.
Fine-needle aspiration (FNA) is commonly used for primary evaluation of thyroid nodules. Twenty to 30 percent of thyroid nodules remain indeterminate after FNA evaluation. Studies show the BRAF p.V600E to be highly specific for papillary thyroid carcinoma (PTC), while RAS mutations carry up to 88 percent positive predictive value for malignancy. We developed a two-tube multiplexed PCR assay followed by single-nucleotide primer extension assay for simultaneous detection of 50 mutations in the BRAF (p.V600E, p.K601E/Q) and RAS genes (KRAS and NRAS codons 12, 13, 19, 61 and HRAS 61) using FNA smears of thyroid nodules. Forty-two FNAs and 27 paired formalin-fixed, paraffin-embedded (FFPE) tissues were tested. All BRAF p.V600E-positive FNA smears (five) carried a final diagnosis of PTC on resection. RAS mutations were found in benign as well as malignant lesions. Ninety-two percent concordance was observed between FNA and FFPE tissues. In conclusion, our assay is sensitive and reliable for simultaneous detection of multiple BRAF/RAS mutations in FNA smears of thyroid nodules.  相似文献   

15.
INTRODUCTION: The presence of KRAS mutations in patients with metastatic colorectal cancer (mCRC) predicts poor response to agents targeting the EGFR. Even in patients with RAS wild type (WT) tumors, resistance eventually develops due to multiple mechanisms, including the expansion of previously undetected KRAS mutated clones. In this feasibility study, we aimed to detect KRAS exon 2 mutations in serial samples of circulating tumor cells (CTCs) of RAS WT patients with mCRC captured by the Isolation by Size of Epithelial Tumor cells (ISET) system. METHODS: CTC isolation using the ISET system was performed from prospectively collected blood samples obtained from patients with RAS and BRAF WT mCRC prior to first-line therapy initiation, at first imaging assessment and on disease progression. CTCs were enumerated using hematoxylin & eosin and CD45 double stain on a single membrane spot. DNA was extracted from 5 spots and KRAS exon 2 mutations were detected using a custom quantitative Polymerase Chain Reaction (qPCR) assay. RESULTS: Fifteen patients were enrolled and 28 blood samples were analyzed. In 9 (60%) patients, at least one sample was positive for the presence of a KRAS exon 2 mutation. In 11 out of 28 samples (39.2%) with detectable CTCs a KRAS mutation was detected; the corresponding percentages for baseline and on progression samples were 27% and 37.5%, respectively. The most commonly detected mutations were G13D and G12C (n = 3). The presence of KRAS mutated CTCs at baseline was not prognostic for either PFS (P = .950) or OS (P = .383). CTC kinetics did not follow tumor response patterns. CONCLUSION: The results demonstrate that using a qPCR-based assay, KRAS exon 2 mutations could be detected in CTCs captured by the ISET system from patients with RAS WT primary tumors. However, the clinical relevance of these CTCs remains to be determined in future studies.  相似文献   

16.
In many different human cancers, one of the HRAS, NRAS, or KRAS genes in the RAS family of small GTPases acquires an oncogenic mutation that renders the encoded protein constitutively GTP-bound and thereby active, which is well established to promote tumorigenesis. In addition to oncogenic mutations, accumulating evidence suggests that the wild-type isoforms may also be activated and contribute to oncogenic RAS-driven tumorigenesis. In this regard, redox-dependent reactions with cysteine 118 (C118) have been found to promote activation of wild-type HRAS and NRAS. We sought to determine if this residue is also important for the activation of wild-type KRAS and promotion of tumorigenesis. Thus, we mutated C118 to serine (C118S) in wild-type KRAS to block redox-dependent reactions at this site. We now report that this mutation reduced the level of GTP-bound KRAS and impaired RAS signaling stimulated by the growth factor EGF. With regards to tumorigenesis, we also report that oncogenic HRAS-transformed human cells in which endogenous KRAS was knocked down and replaced with KRASC118S exhibited reduced xenograft tumor growth, as did oncogenic HRAS-transformed KrasC118S/C118S murine cells in which the C118S mutation was knocked into the endogenous Kras gene. Taken together, these data suggest a role for redox-dependent activation of wild-type KRAS through C118 in oncogenic HRAS-driven tumorigenesis.  相似文献   

17.
Somatic mutations in KRAS, NRAS, and BRAF genes are related to resistance to anti-EGFR antibodies in colorectal cancer. We have established an extended RAS and BRAF mutation assay using a next-generation sequencer to analyze these mutations. Multiplexed deep sequencing was performed to detect somatic mutations within KRAS, NRAS, and BRAF, including minor mutated components. We first validated the technical performance of the multiplexed deep sequencing using 10 normal DNA and 20 formalin-fixed, paraffin-embedded (FFPE) tumor samples. To demonstrate the potential clinical utility of our assay, we profiled 100 FFPE tumor samples and 15 plasma samples obtained from colorectal cancer patients. We used a variant calling approach based on a Poisson distribution. The distribution of the mutation-positive population was hypothesized to follow a Poisson distribution, and a mutation-positive status was defined as a value greater than the significance level of the error rate (α = 2 x 10-5). The cut-off value was determined to be the average error rate plus 7 standard deviations. Mutation analysis of 100 clinical FFPE tumor specimens was performed without any invalid cases. Mutations were detected at a frequency of 59% (59/100). KRAS mutation concordance between this assay and Scorpion-ARMS was 92% (92/100). DNA obtained from 15 plasma samples was also analyzed. KRAS and BRAF mutations were identified in both the plasma and tissue samples of 6 patients. The genetic screening assay using next-generation sequencer was validated for the detection of clinically relevant RAS and BRAF mutations using FFPE and liquid samples.  相似文献   

18.
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a “suicidal” PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell–selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition–induced cancer cell–selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.  相似文献   

19.
In colorectal cancer, mutation of KRAS (RASMUT) reduces therapeutic options, negatively affecting prognosis of the patients. In this setting, administration of CDK4/6-inhibitors, alone or in combination with other drugs, is being tested as promising therapeutic strategy. Identifying sensitive patients and overcoming intrinsic and acquired resistance to CDK4/6 inhibition represent still open challenges, to obtain better clinical responses. Here, we investigated the role of the CDK inhibitor p27kip1 in the response to the selective CDK4/6-inhibitor Palbociclib, in colorectal cancer. Our results show that p27kip1 expression inversely correlated with Palbociclib response, both in vitro and in vivo. Generating a model of Palbociclib-resistant RASMUT colorectal cancer cells, we observed an increased expression of p27kip1, cyclin D, CDK4 and CDK6, coupled with an increased association between p27kip1 and CDK4. Furthermore, Palbociclib-resistant cells showed increased Src-mediated phosphorylation of p27kip1 on tyrosine residues and low doses of Src inhibitors re-sensitized resistant cells to Palbociclib. Since p27kip1 showed variable expression in RASMUT colorectal cancer samples, our study supports the possibility that p27kip1 could serve as biomarker to stratify patients who might benefit from CDK4/6 inhibition, alone or in combination with Src inhibitors.Subject terms: Colorectal cancer, Cell growth, Cell signalling  相似文献   

20.
PurposeAs circulating tumor DNA (ctDNA) measurement becomes more widespread, the “NeoRAS” phenomenon, where tissue rat sarcoma viral oncogene homolog (RAS) status converts from mutant (MT) to wild-type (WT) after treatment in metastatic colorectal cancer (mCRC), is gaining attention because ineffective epidermal growth factor receptor (EGFR) inhibitors may made effective. This study investigated its incidence and clinicopathological characteristics.Patients and MethodsIn total, 107 mCRC patients (refractory or intolerant to previous chemotherapies) with tissue RAS MT were enrolled in four institutions from June 2021 to August 2022. The RAS status in ctDNA was assessed using OncoBEAM™ RAS CRC assay. Clinicopathologic features were compared between patients according to their RAS status in ctDNA, whether WT conversion was noted or not.ResultsThe incidence rate of NeoRAS WT mCRC was 21.5% (23/107). According to tissue RAS mutation sites, NeoRAS WT frequency in patients with KRAS mutation in exon 2 was significantly lower than those in exon 3 and 4 or NRAS (18.2% [18/99] vs 62.5% [5/8], P = 0.011). Regarding clinical background, there were significant differences in NeoRAS WT frequency between male vs female patients (30.6% [19/62] vs 8.9% [4/45], P = 0.008), and absence vs presence of liver metastasis (38.6% [17/44] vs 9.5% [6/63], P < 0.001). Comparing the two groups divided by the median value, NeoRAS WT was associated with smaller tumor diameter (>60.9 mm vs ≤, 3.8% [2/53] vs 38.9% [21/54], P < 0.001), lower carcinoembryonic antigen level (>38.2 ng/ml vs ≤, 11.3% [6/53] vs 31.5% [17/54], P = 0.018), and lower carbohydrate antigen 19–9 level (>158.0 U/ml vs ≤, 9.4% [5/53] vs 33.3% [18/54], P = 0.004). In the logistic regression multivariate analysis, liver metastasis absence (Odds ratio [OR], 4.62; P = 0.019), smaller tumor diameter (OR, 7.92; P = 0.012), and tissue RAS MT in other than KRAS exon 2 (OR, 9.04; P = 0.026) were significantly related to the conversion to NeoRAS WT in ctDNA.ConclusionsOriginal RAS variants in tissue, tumor diameter, and liver metastasis are related to conversion to NeoRAS WT mCRC in ctDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号