首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To compare in cell culture endothelin-1 (ET-1) production, receptor density, and effect on macromolecular synthesis by articular chondrocytes (AC). METHODS: AC were isolated from 1-month and 18-month old rats and cultured as monolayers. They were incubated with ET-1 without or with iNOS inhibitors, nitro-L-arginine methyl ester (L-NAME) or guanylate cyclase inhibitor, LY83583 and then [3H]thymidine, 35SO4 and [3H]proline incorporations were measured. The density and affinity for 125I-ET-1 of binding sites, and receptor isotypes were determined. The cells were also treated with interleukin-1beta (IL-1beta) or tumor necrosis factor-alpha (TNF-alpha), and then ET-1 productions measured. As well, the cells were challenged with NOC-5 (nitric oxide donor) or ET-1 and then ET-1 and NO respectively were measured. RESULTS: A concentration-dependent stimulation of DNA, PG, collagen and NO synthesis was obtained when cells were incubated with ET-1 for 24-h. Eighteen-month old chondrocytes incorporated per microg DNA more [3H]thymidine, 35SO4 and [3H]proline but less NO when challenged with ET-1 than the 1-month old cells. However, strong inhibition of this initial stimulation was seen after 48-h. L-NAME and LY83583 enhanced basal-, and ET-1-induced initial stimulation and completely suppressed late (at 48-h to 72-h) ET-1-induced inhibition, suggesting NO was responsible for this inhibitory effect. Eighteen-month old chondrocytes expressed per mug DNA more high affinity receptors of predominantly ET(A) subtype. They also produced more ET-1 but less NO under basal conditions and more ET-1 when challenged with IL-1beta and TNF-alpha. NOC-5 inhibited the production of ET-1. CONCLUSIONS: Eighteen-month old chondrocytes produce more ET-1, possess more ET-1-specific receptors, and increase more DNA, PG and collagen synthesis when challenged during 24-h with ET-1. NO, which suppresses ET-1 production and the production of which is increased by ET-1, seems to account for the late ET-1-induced inhibition of macromolecular synthesis. The possible implication of ET-1 in aging as related to osteoarthritis is discussed.  相似文献   

2.
We studied the effect of endothelins (ETs) on receptor-mediated NO/cGMP signaling in rat arcuate nucleus–median eminence (AN-ME) fragments, an hypothalamic structure known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers together with densely arranged ETB-receptor-like immunoreactive fibers. NOS activity was determined measuring the conversion of [3H] arginine to [3H] citrulline, as an index of NO produced. cGMP production was determined by radio immunoassay. ET-1, ET-3, and the selective ETB receptor agonist, IRL1620, significantly increased cGMP formation and NOS activity. Preincubation of AN-ME fragment with L-arginine analog, N-nitro-L-arginine (L-NAME), inhibited ET-1 or IRL1620-stimulated cGMP formation. The addition of the selective ETB receptor antagonist, BQ788, blocked ET-1-, ET-3-, or IRL1620-induced increase in NOS activity and cGMP generation, while BQ123, a selective ETA receptor antagonist, was ineffective. Our results demonstrate that in whole rat AN-ME fragments, ETs stimulate NO/cGMP signaling pathway through the interaction with the ETB receptor subtype, supporting the concept that ETs may represent an important regulator of reproductive and neuroendocrine function.  相似文献   

3.
Nitric oxide (NO), in addition to its vasodilator action, has also been shown to antagonize the mitogenic and hypertrophic responses of growth factors and vasoactive peptides such as endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs). However, the mechanism by which NO exerts its antimitogenic and antihypertrophic effect remains unknown. Therefore, the aim of this study was to determine whether NO generation would modify ET-1-induced signaling pathways involved in cellular growth, proliferation, and hypertrophy in A-10 VSMCs. Treatment of A-10 VSMCs with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP), two NO donors, attenuated the ET-1-enhanced phosphorylation of several key components of growth-promoting and hypertrophic signaling pathways such as ERK1/2, PKB, and Pyk2. On the other hand, inhibition of the endogenous NO generation with N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, increased the ET-1-induced phosphorylation of these signaling components. Since NO mediates its effect principally through a cGMP-soluble guanylyl cyclase (sGC) pathway, we investigated the role of these molecules in NO action. 8-Bromoguanosine 3',5'-cyclic monophosphate, a nonmetabolizable and cell-permeant analog of cGMP, exhibited a effect similar to that of SNAP and SNP. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, reversed the inhibitory effect of NO on ET-1-induced responses. SNAP treatment also decreased the protein synthesis induced by ET-1. Together, these data demonstrate that NO, in a cGMP-dependent manner, attenuated ET-1-induced phosphorylation of ERK1/2, PKB, and Pyk2 and also antagonized the hypertrophic effects of ET-1. It may be suggested that NO-induced generation of cGMP contributes to the inhibition of ET-1-induced mitogenic and hypertrophic responses in VSMCs.  相似文献   

4.
1. l-Tyrosylglycine O[(35)S]-sulphate is metabolized by the rat to yield the O[(35)S]-sulphate esters of l-tyrosine, p-hydroxyphenylpyruvic acid and p-hydroxyphenylacetic acid. 2. The proportion of the administered peptide which is excreted as l-tyrosine O[(35)S]-sulphate is greater at a higher dose. 3. An enzyme capable of hydrolysing the peptide bond of l-tyrosylglycine O[(35)S]-sulphate to yield l-tyrosine O[(35)S]-sulphate has been detected in rat liver and kidney. 4. The activity of this enzyme is completely inhibited by a large excess of l-tyrosylglycine.  相似文献   

5.
The review presents our results on the regulatory role of prostaglandins (PG) and nitric oxide (NO) in the activation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic, adrenergic and histaminergic systems and by neurohormones: corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) under basal conditions. The synthesis of endogenous PG or NO was inhibited by non-selective and selective cyclooxygenase (COX) antagonists and nitric oxide synthase (NOS) blockers given 15 min before the respective receptor agonist and HPA axis activity was assessed 1 h later by measuring plasma ACTH and serum corticosterone levels. The muscarinic agent - carbachol-induced HPA response was considerably supressed by piroxicam, a predominantly constitutive cyclooxygenase (COX-1) inhibitor and significantly diminished by indomethacin, a non-selective COX blocker, but was unaffected by compound NS-398, an inducible cyclooxygenase (COX-2) antagonist. A non-selective NOS antagonist L-NAME and neuronal NOS blocker L-NNA significantly intensified the carbachol-induced corticosterone secretion. The nicotine-induced increase in ACTH and corticosterone response was significantly supressed by piroxicam, and diminished by indomethacin, but was significantly augmented by L-NAME and L-NNA. The inhibition of PG synthesis by indomethacin totally abolished or reversed the increase of nicotine-induced hormone responses to both NOS blockers. The i.c.v. phenylephrine, an alpha(1)-adrenergic receptor agonist - evoked HPA response was significantly impaired by piroxicam and compound NS-398 and more potently reduced by L-NAME. The i.c.v. clonidine, an alpha(2)-adrenergic agonist - elicited HPA response was also considerably decreased by piroxicam, compound NS-398 and L-NAME. By contrast, the stimulatory effect of i.c.v. isoprenaline, a non-selective beta-adrenergic agonist, was not altered by either COX or NOS inhibitors. The i.c.v. histamine- and HTMT, a histamine H(1)-agonist-induced ACTH and corticosterone response were significantly diminished by piroxicam and indomethacin, respectively. Compound NS-398, did not markedly alter the HPA response to HTMT or amthamine, a histamine H(2) receptor agonist. Inhibition of endogenous NO synthesis by a neuronal NOS inhibitor 7-nitroindazole markedly enhanced the histamine-induced hormone secretion, abolished the HTMT-induced response and did not substantially alter the amthamine-evoked ACTH and corticosterone secretion. COX blockers did not significantly affect the CRH-induced HPA response and the inhibition of NO synthesis by L-NNA markedly intensified ACTH response. The vasopressin-stimulated increase in HPA response, was considerably reduced by the inhibition of PG synthesis by both COX antagonists while inhibition of NO synthesis by NOS blockers greatly enhanced this response. The involvement of PG and NO in the neurohormonal regulation of HPA activity depends mainly on greatly complex and tightly regulated mechanisms at the level of second messengers IP(3) and adenylyl cyclase systems.  相似文献   

6.
We assessed the possible link between endothelin receptor mediated phosphoinositide breakdown and NO/cGMP signaling pathways in rat arcuate nucleus-median eminence fragments (AN-ME), brain structures known to contain a rich plexus of nitric oxide synthase (NOS)-containing neurons and fibers, together with densely arranged endothelin ETB-receptors-like immunoreactive fibres. Our data show that ET-1, ET-3 and the ETB-receptors agonist, IRL 1620, increased inositol monophosphate (InsP1) accumulation, NOS activity and cGMP formation, in a similar degree. The stimulatory effect of ETs on InsP1 accumulation and cGMP formation was inhibited by the phospholipase C (PLC) inhibitor, neomycin, and the absence of extracellular calcium, suggesting that calcium is involved in endothelin receptor-induced PLC activation. The L-arginine analog, L-NAME, inhibited ET-1 or IRL1620-stimulated cGMP formation. The ETA receptor antagonists BQ 123, did not alter, while the ETB receptor antagonists BQ788 inhibited ETs-induced increase in the PI metabolism, NOS activity and cGMP generation. Our data indicate that in AN-ME, ETB receptor signals through receptor-mediated calcium dependent-stimulation of phosphoinositide breakdown and activation of NOS/cGMP signaling pathway.  相似文献   

7.
Nitric oxide ((.-)NO) is an important physiological signaling molecule and potent vasodilator. Recently, we have shown abnormal (.-)NO metabolism in the plasma of patients with systemic sclerosis (SSc), a disease that features excessive collagen overproduction as well as vascular dysfunction. The current study investigates the effects of (.-)NO and peroxynitrite (ONOO(-)) on secretion of type I collagen by SSc dermal fibroblasts, compared with those from normal dermal fibroblasts (CON) and a dermal fibroblast cell line (AG). Dermal fibroblasts were incubated with (.-)NO donors (SNP, DETA-NONOate) with or without the antioxidant ascorbic acid, or ONOO(-) for 24-72 h. In CON and AG fibroblasts, type I collagen was dose dependently decreased by SNP or DETA-NONOate. However, (.-)NO had no effect in SSc fibroblasts. Furthermore, the inhibition of collagen synthesis by (.-)NO was reversed by ascorbic acid and was not affected by 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanyl cyclase, or 8-bromoguanosine cyclic 3',5'-monophosphate, a cGMP agonist. SNP also showed a significant up-regulation of matrix metalloproteinase-1 (MMP-1) protein and activity levels, an essential collagenase involved in collagen degradation, in the AG fibroblasts. Additionally, (.-)NO-treated fibroblasts had lower prolyl hydroxylase activity, an enzyme important in the post-translational processing of collagen, while there was no effect on total protein levels. There were no significant effects on type I collagen levels when dermal fibroblasts were treated with ONOO(-). Taken together, ()NO inhibits collagen secretion in normal dermal fibroblasts but regulation is lost in SSc fibroblasts, while ONOO(-) itself is ineffective. (.-)NO inhibition of collagen was by cGMP-independent regulatory mechanisms and in part may be due to up-regulation of MMP-1 and/or inhibition of prolyl hydroxylase. These differences may contribute to the observed pathology of SSc.  相似文献   

8.
Information about the presence and effects of nitric oxide (NO) in fish vasculature is scant and contradictory. We have studied the NO/cGMP system in the branchial circulation of the teleost Anguilla anguilla using a branchial basket preparation under basal conditions and cholinergic stimulation. The effects of endogenous and exogenous NO were tested with L-arginine, the nitric oxide synthase (NOS) substrate, and the NO donors 3-morpholinosydnonimine (SIN-1) and sodium nitroprusside (SNP), respectively. L-arginine (from 10(-11) to 10(-6) M) and the NO donors (starting from 10(-14) M) caused dose-dependent vasoconstriction. Conversely, in the ACh-pre-contracted preparations both donors elicited vasodilation. SIN-1-induced vasoconstriction was due to NO generation: it was increased by superoxide dismutase (SOD) and blocked by NO scavenger hemoglobin. Pre-treatment with sGC inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of SIN-1 and SNP. The stable cGMP analogue 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br cGMP) induced dose-dependent vasoconstriction. Unexpectedly, three NOS inhibitors, N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), L-N(5)-(1-iminoethyl) ornithine (L-NIO), caused mild vasoconstriction. ACh caused vasoconstriction, but at pico- and nanomolar concentrations it caused mild but significant vasodilation in 40% of the preparations. Both responses, blocked by atropine and pirenzepine, required an intact endothelium. The ACh-induced vasoconstriction was substantially independent of a NO-cGMP mechanism.  相似文献   

9.
Zhan CD  Pan JY 《生理学报》2000,52(6):450-454
在原代培养的新生大鼠心肌细胞上,探讨一氧化氮(NO)对血管紧张素Ⅱ(AⅡ)和内皮素-1(ET-1)诱导的心肌细胞肥大和原癌基因c-fos表达的影响。用Bradford法测定心肌细胞总蛋白含量(作为心肌细胞肥大的指标);用基因特异性引物和SuperScript一步法进行逆转录聚合酶链式反应(RT-PCR),检测大鼠心肌细胞原癌基因c-fos的表达(以GAPDH为内标)。结果显示,AⅡ和ET-1分别作  相似文献   

10.
在原代培养的新生大鼠心肌细胞上, 探讨一氧化氮 (NO)对血管紧张素Ⅱ (AⅡ)和内皮素-1 (ET-1)诱导的心肌细胞肥大和原癌基因c-fos表达的影响.用Bradford 法测定心肌细胞总蛋白含量 (作为心肌细胞肥大的指标); 用基因特异性引物和 SuperScript一步法进行逆转录聚合酶链式反应 (RT-PCR), 检测大鼠心肌细胞原癌基因c-fos的表达 (以GAPDH为内标).结果显示, AⅡ和ET-1分别作用5 d和3 d后, 心肌细胞总蛋白含量显著增加; 硝普钠 (NO供体)可抑制AⅡ或ET-1诱导的心肌细胞总蛋白增加.AⅡ,ET-1和PMA (蛋白激酶C激动剂)均可诱导心肌细胞原癌基因c-fos的表达; L-精氨酸可抑制AⅡ,ET-1和PMA诱导心肌细胞原癌基因c-fos的表达, L-NAME (NOS抑制剂)可抑制L-精氨酸的这一作用; 硝普钠对可抑制AⅡ,ET-1和PMA诱导心肌细胞原癌基因c-fos的表达.结果表明, NO可抑制AⅡ或ET-1诱导的心肌细胞肥大和原癌基因c-fos表达, 其作用机制可能与蛋白激酶C这一环节有关.  相似文献   

11.
Acute inhibition of nitric oxide (NO) synthase causes a reversible alteration in myocardial substrate metabolism. We tested the hypothesis that prolonged NO synthase inhibition alters cardiac metabolic phenotype. Seven chronically instrumented dogs were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME, 35 mg.kg(-1).day(-1) po) for 10 days to inhibit NO synthesis, and seven were used as controls. Cardiac free fatty acid, glucose, and lactate oxidation were measured by infusion of [(3)H]oleate, [(14)C]glucose, and [(13)C]lactate, respectively. After 10 days of L-NAME administration, despite no differences in left ventricular afterload, cardiac O(2) consumption was significantly increased by 30%, consistent with a marked enhancement in baseline oxidation of glucose (6.9 +/- 2.0 vs. 1.7 +/- 0.5 micromol.min(-1).100 g(-1), P < 0.05 vs. control) and lactate (21.6 +/- 5.6 vs. 11.8 +/- 2.6 micromol.min(-1).100 g(-1), P < 0.05 vs. control). When left ventricular afterload was increased by ANG II infusion to stimulate myocardial metabolism, glucose oxidation was augmented further in the L-NAME than in the control group, whereas free fatty acid oxidation decreased. Exogenous NO (diethylamine nonoate, 0.01 micromol.kg(-1).min(-1) iv) could not reverse this metabolic alteration. Consistent with the accelerated rate of carbohydrate oxidation, total myocardial pyruvate dehydrogenase activity and protein expression were higher (38 and 34%, respectively) in the L-NAME than in the control group. Also, protein expression of the constitutively active glucose transporter GLUT-1 was significantly elevated (46%) vs. control. We conclude that prolonged NO deficiency causes a profound alteration in cardiac metabolic phenotype, characterized by selective potentiation of carbohydrate oxidation, that cannot be reversed by a short-term infusion of exogenous NO. This phenomenon may constitute an adaptive mechanism to counterbalance cardiac mechanical inefficiency.  相似文献   

12.
Lu SY  Wang DS  Zhu MZ  Zhang QH  Hu YZ  Pei JM 《Life sciences》2005,77(1):28-38
The aim of the present research is to investigate the effects of vasonatrin peptide (VNP) on hypoxia-induced proliferation and collagen synthesis in pulmonary artery smooth muscle cells (PASMCs). Smooth muscle cells isolated from rat pulmonary artery were cultured and used at passages 3-5. Cell proliferation and collagen synthesis were evaluated by cell counts, [(3)H] thymidine and [(3)H] proline incorporation. The results showed that cells exposed to hypoxia for 24 h exhibited a significant increase in [(3)H] thymidine (93%) and [(3)H] proline (52%) incorporation followed by a significant increase in cell number (47%) at 48 h in comparison with the respective normoxic controls. VNP reduced hypoxia-stimulated increase in cell proliferation in a concentration-dependent manner from 10(-8) to 10(-6) mol/L and attenuated hypoxia-induced collagen synthesis ranging from 10(-6) to 10(-5) mol/L, which is similar to but more potent than both ANP and CNP. The action of VNP on PASMCs was mimicked by 8-bromo-cGMP (10(-4) mol/L, the membrane-permeable cGMP analog), and blocked by HS-142-1 (2 x 10(-5) mol/L), the particulate guanylyl cyclase-coupled natriuretic peptide receptor antagonist, or KT-5823 (10(-6) mol/L), the cGMP-dependent protein kinase (PKG) inhibitor. The results suggest that VNP inhibits hypoxia-stimulated proliferation and collagen synthesis in cultured rat PASMCs via particulate guanylyl cyclase-coupled receptors through cGMP/PKG dependent mechanisms.  相似文献   

13.
The exposure of confluent peritubular (PT) cells from immature rat testis to insulin-like growth factor-1 (IGF-1) induced a time and dose-dependent increase of [35S]-sulfate and [3H]-d-glucosamine incorporations in newly synthesized proteoglycans (PG). This increased content of PG was the result of an enhancement of PG synthesis rather than a decreased rate of degradation. IGF-1 had no effect on the molecular weight of synthesized PG nor on the nature and distribution of the constitutive glycosaminoglycan chains, both in medium and in cell layer. The stimulation of PG synthesis by IGF-1 appeared to be due, at least partially, to an increase of glycosylation processes. IGF-1 effect was mediated by the classical tyrosine kinase signalling process, since IGF-1 action on PG synthesis was abolished by genistein and tyrphostin A9, two well known tyrosine kinase inhibitors. The increase of PG synthesis was accompanied with an undersulfation of constitutive glycosaminoglycan (GAG) chains (chondroitin sulfate and heparan sulfate chains) since the [35S]/[3H] ratio was reduced by about 20–25% in presence of IGF-1. Although the mechanism of hyaluronic acid synthesis was completely different from those of other GAG, IGF-1 also dramatically enhanced its production by PT cells.  相似文献   

14.
Nitric oxide (NO) relaxes vascular smooth muscle in part through an accumulation of cGMP in the target cells. We hypothesized that a similar effect may also exist on collagen gel contraction mediated by human fetal lung (HFL1) fibroblasts, a model of wound contraction. To evaluate this, HFL1 cells were cultured in three-dimensional type I collagen gels and floated in serum-free DMEM with and without various NO donors. Gel size was measured with an image analyzer. Sodium nitroprusside (SNP, 100 microM) significantly augmented collagen gel contraction by HFL1 cells (78.5 +/- 0.8 vs. 58.3 +/- 2. 1, P < 0.01), whereas S-nitroso-N-acetylpenicillamine, 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride, NONOate, and N(G)-monomethyl-L-arginine did not affect the contraction. Sodium ferricyanide, sodium nitrate, or sodium nitrite was not active. The augmentory effect of SNP could not be blocked by 1H-[1,2, 4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, whereas it was partially reversed by 8-(4-chlorophenylthio) (CPT)-cGMP. To further explore the mechanisms by which SNP acted, fibronectin and PGE(2) production were measured by immunoassay after 2 days of gel contraction. SNP inhibited PGE(2) production and increased fibronectin production by HFL1 cells in a concentration-dependent manner. CPT-cGMP had opposite effects on fibronectin and PGE(2) production. Addition of exogenous PGE(2) blocked SNP-augmented contraction and fibronectin production by HFL1 cells. Therefore, SNP was able to augment human lung fibroblast-mediated collagen gel contraction, an effect that appears to be independent of NO production and not mediated through cGMP. Decreased PGE(2) production and augmented fibronectin production may have a role in this effect. These data suggest that human lung fibroblasts in three-dimensional type I collagen gels respond distinctly to SNP by mechanisms unrelated to the NO-cGMP pathway.  相似文献   

15.
The peptide, endothelin-1 (ET-1) regulates proliferative responses in numerous cell types. Recently, a dual ET receptor antagonist was shown to prevent the increase in airway smooth muscle cell (SMC) proliferation that accompanies airway smooth muscle remodeling in a rat model of experimental asthma. Thus, we used [(3)H]-thymidine incorporation assays and western immunoblotting to identify signaling pathways that regulate proliferative responses in cultured rat tracheal SMC. Our data indicate that ET-1 activation of the ET A receptor subtype induced [(3)H]-thymidine incorporation and activation of ERK 1/2 in primary rat tracheal SMC. ET-1-induced [(3)H]-thymidine incorporation and activation of ERK 1/2 were inhibited by pretreatment of SMC with pertussis toxin or down regulation of phorbol ester responsive isoforms of PKC. While ET- 1-induced ERK 1/2 activation was unaffected following inhibition of Rho kinase, ET-1-induced [(3)H]-thymidine incorporation was abrogated. ET-1 also potentiated [(3)H]-thymidine incorporation as well as cell proliferation of SMC stimulated with PDGF-BB and this response did not appear to be regulated by ERK1/ 2. These data demonstrate that ET-1 induces activation of multiple G proteins that regulate rat tracheal SMC proliferative responses, likely through signaling pathways downstream of ERK1/2 and Rho kinase.  相似文献   

16.
We investigated the involvement of matrix metalloproteinases (MMPs), tissue inhibitor (TIMP) and endothelin-1 (ET-1) in the renal damage in spontaneously hypertensive rats (SHR) following nitric oxide (NO) deprivation. SHR received Nomega-nitro-L-arginine methyl ester (L-NAME) from 5 wk-old for a period of 30 days. An ETA antagonist, FR139317 was used. We gave SHR FR139317 alone and cotreatment with L-NAME. L-NAME caused systemic hypertension, decrease in plasma nitrate/nitrite, increases in blood urea nitrogen and creatinine, impairment of glomerular dynamics. NO deprivation reduced the renal tissue cGMP, but it increased the collagen volume fraction, number of sclerotic glomeruli, arteriolar injury score and glomerular injury score. In addition, L-NAME elevated the plasma ET-1 at day 5. Cotreatment with FR139317 alleviated the L-NAME-induced functional and structural changes of renal glomeruli. L-NAME administration for 5 to 10 days resulted in decreases in MMP2 and MMP9 with increasing TIMP2. After L-NAME for 15 days, opposite changes (increases in MMP2 and MMP9 with a decrease in TIMP2) were observed. FR139317 cotreatment ameliorated the L-NAME-induced changes in MMP2 and MMP9 throughout the 30-day observation period. The ETA antagonist cotreatment attenuated the L-NAME-induced increase in TIMP2 before day 15, but not after day 20. The results indicate that ET-1, MMPs and TIMP are involved at the early stage (before 10 days) of glomerular sclerosis and arteriosclerosis with functional impairment following NO deprivation. The changes in MMPs and TIMP at the late stage (after 20 days) may be a compensatory response to prevent further renal damage.  相似文献   

17.
N(G)-nitro-L-arginine methyl ester (L-NAME) is a non-specific nitric oxide (NO) synthase inhibitor, commonly used for the induction of NO-deficient hypertension. The aim of this study was to investigate the effect of chronic low-dose administration of L-NAME on NO production, vascular function and structure of the heart and selected arteries of rats. Adult male Wistar rats were treated with L-NAME in the dose of approximately 1.5 mg/kg/day in drinking water for 8 weeks. Basal blood pressure (BP) of rats (determined by tail-cuff) was 112+/-3 mm Hg. The low-dose administration of L-NAME significantly elevated BP measured on the third and sixth week of treatment vs. controls by approximately 9 % and 12 %, respectively. After this period, BP of L-NAME-treated rats returned to the control values. The relative left ventricular mass, heart fibrosis and collagen III/collagen I ratio were not affected by L-NAME. Similarly, there were no alterations in the cross-sectional area and wall thickness/diameter ratio of the aorta and the femoral artery of L-NAME-treated rats. NO synthase activity (determined by conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline) was not altered in the hypothalamus of L-NAME-treated rats. Interestingly, chronic low-dose L-NAME treatment significantly elevated NO synthase activity in the left ventricle and aorta, increased endothelium-dependent acetylcholine-induced vasorelaxation and reduced serotonin-induced vasoconstriction of the femoral artery. The data suggest that chronic low-dose L-NAME treatment can increase NO production and vasorelaxation in normotensive rats without negative structural changes in the cardiovascular system.  相似文献   

18.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

19.
20.
Yang D  Tan Z  Pan JY  Wang TH 《生理学报》2002,54(1):17-22
实验利用大鼠血管平滑肌细胞(vascular smooth muscle cells,VSMC)作为模型,观察17-β雌二醇(E2)对VSMC增殖和原癌基因c-fos表达的影响,并探讨VSMC源性一氧化氮(NO)在基中的作用,检测指标包括NO释放的测定,细胞计数、^3H-Tdr掺入,噻唑蓝(MTT)测定和c-fosmRNA表达,结果显示,E2(10^-12-10^-8mol/L)呈浓度依赖性地促进VSMC中NO的释放;10^-8mol/LE2能明显抑制10%小牛血清(FCS)和10^-7mol/L内皮素-1(ET-1)诱导的细胞增殖和DNA合成,E2的抑制作用均可被雌激素受体(ER)拮抗剂tamoxifen(10^-7mol/L)和一氧化氮合酶抑制剂L-NAME(10^-6mol/L)明显减轻;E2(10^-8mol/L)可明显抑制10^-7mol/LET-1诱导的VSMCc-fos表达,这种抑制作用可被L-NAME(10^-6mol/L)明显减轻,这些结果提示E2能抑制VSMC增殖和原癌基因c-fos表达,这种促进VSMC的NO释放密切相关,而且该作用至少部分通过ER介导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号