首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The development of this study has been a succession of steps each of which rests on the preceding. It falls naturally into three distinct stages. The first is that ofIdentification Here it was found that the lead precipitate present in the meristematic region of root tips grown in Pb-containing culture solutions is a combination of lead with sulfhydryl. In such tips mitosis but not growth by increase in cell size is inhibited. Also it was found that sulfhydryl is concentrated in the meristematic region of normal roots. Therefore the hypothesis was developed that growth by increase in cell number is specifically factored by -SH. The next stage was theTesting of Extracts Here it was found that acid extracts of the meristem of root tips accelerated root length growth when controlled by acid extracts of the next distal portion, while alkaline extracts similarly controlled showed no such activity. This proved that the root region of highest sulfhydryl concentration and mitotic activity contains a naturally occurring acid-stable, alkali-labile substance stimulative of root growth in length. These findings are thus physiologically and chemically consistent with the hypothesis. The next stage was theTesting of Synthetic Compounds Here the action of a variety of sulfhydryl compounds on mitosis in root tips and reproduction rate in Paramecium was studied, using the same compounds minus the sulfur moiety as controls. It was found that the -SH group stimulates cell division in both plants and animals. Cell size growth is not stimulated. Thus, through identification and testing of the identified group in natural and synthetic compounds, the conclusion is arrived at that Sulfhydryl is the essential stimulus to growth by increase in cell number.Credit is due to MissElizabeth Justice and MissJane Anderson whose conscientious and painstaking efforts made this study possible.  相似文献   

2.
The growth of wheat seedlings (Triticum sativum) is inhibited by abscisic acid (ABA). The inhibition increases with the concentration of ABA (from 10-6M to 5 × 10-5M) and is stronger in the case of coleoptiles and first leaves than in roots. In contrast, naphthaleneacetic acid (ANA), at 10-5M, exerts its greatest inhibitory effect on the roots. The inhibitory effect of ABA on coleoptiles can be partially overcome by kinetin and to a much smaller degree by gibberellic acid. Neither of these two compounds, at 10-5M, had any effect on the ABA-induced inhibition of root growth. The RNA and DNA contents per plant organ are considerably reduced after treatment of the seedlings with ABA, particularly in the coleoptiles and the first leaves. The incorporation of uracil-2-14C and uridine T (G) into RNA of treated seedlings is reduced in the case of coleoptiles and first leaves, but considerably enhanced in roots. The mechanism of the action of ABA is discussed in the light of these results.  相似文献   

3.
Miller AL  Gow NA 《Plant physiology》1989,89(4):1198-1206
Correlations between root-generated ionic currents, extracellular pH, indoleacetic acid, fusicoccin, and growth were investigated. Current consistently entered the meristematic and elongating tissues of intact growing roots of Zea mays cv Golden Bantam. Mature root regions generated the outward limb of the current loop. Ion-substitution and pH-profile experiments suggested that the bulk of the ionic current was carried by H+. Calcium ions did not carry current, but calcium may regulate the proton circulation since the proton current density was slightly larger in calcium-depleted media. Increased root elongation at low pH was associated with increased current density and an extended zone of inward current. Conversely decreased elongation at high pH was associated with a reduced current density and a more restricted zone of inward current. The effect of the fungal toxin fusicoccin was to increase the current density of the inward limb of the ion current and to increase root extension. Concentrations of indoleacetic acid that reduced root growth, also reduced the density of the inward current and shortened the inward current zone. The results emphasize the point that roots are electrically contiguous over many millimeters and that the electrophysiology of root growth is best studied in intact root systems.  相似文献   

4.
Variations of the Level of the Nitrogen and Thiol Groups in Tissues Culture.—Distribution of nitrogen and thiol compounds was analysed in the fragments of carrot roots cultivated in vitro. A typical gradient of –SH groups was observed: high level in the callus, low level in the base of the fragment (in contact with the medium). In discontinuous light, callus—which have a great amount of chlorophylls—contain less sulfhydric compounds than in continuous dark. With increasing age of the tissues, the concentration of the endogenous –SH groups was decreasing. The probable biochemical relations between –SH level, auxin content and auxin-oxidase activity are discussed.  相似文献   

5.
Abstract

Studies on root apical meristem. VII. Activities of some enzymes of glycolysis, of the Krebs cycle and of the pentose phosphate cycle. — The enzymes assayed are: aldolase, glyceraldheyde-3-phosphate: NAD oxidoreductase, triosephosphate isomerase, fumarate hydratase, aconitate hydratase, glucose-6-phosphate: NADP oxidoreductase, 6-phosphogluconate: NADP oxidoreductase. The determinations were made on pea roots (Pisum sativum cv. Alaska) which were obtained by germinating seeds on moist vermiculite, in the dark, at 25° C, either for 2 or 7 days. In both cases samples were collected from the meristematic zone (0-2 mm from the apex) and from the extending zone (2-4 mm from the apex). All the enzymes determined are present both in the meristematic and in the extending zone of the root. If referred to a fresh weight basis, their activities are always greater in the meristem; if referred to a dry weight or to a protein basis, the values in the meristematic zone are nearly equal to, or higher than those in the extending zone. With respect to the development of the cell in the root from the meristematic to the vacuolated state, the present results indicate that the change in volume is accompanied by increases is the enzymes tested.  相似文献   

6.
Summary Activities of DNA polymerases and RNA polymerases were studied by autoradiographic methods in growing and differentiating root cortex cells ofZea mays — a species in which endomitosis occurs — andTulipa kaufmanniana — in which this process does not occur. InTulipa kaufmanniana, the highest activity of DNA polymerase appears in the nuclei of meristematic zone during the S phase of the cell cycle. InZea mays, endomitotic replication of DNA occurs in all growth and differentiation zones and the activity of DNA polymerase in the nuclei is similar to that in the meristematic zone. In both species, nuclear RNA synthesis, measured with3H uridine incorporation, is highest in the meristematic zone and declines steadily with development. Activity of nuclear RNA polymerase is present in all developmental zones in both species and is similar to that in the meristematic zone.3H uridine incorporation into nucleoli decreases markedly in both species, whereas the activity of nucleolar RNA polymerase remains at a high level in all root segments inZea mays and decreases slightly inTulipa kaufmanniana.It is argued that the differences between the incorporation of3H uridine and that or3H UMP may be caused by a reduction of the pool of endogenous ribonucleoside triphosphates. Marked activities of DNA polymerase and RNA polymerase in cytoplasm are possibly related to the growth and division of plastids and mitochondria.  相似文献   

7.
Τhe bidirectional relationship between cortical microtubule orientation and cell wall structure has been extensively studied in elongating cells. Nevertheless, the possible interplay between microtubules and cell wall elements in meristematic cells still remains elusive. Herein, the impact of cellulose synthesis inhibition and suppressed cell elongation on cortical microtubule orientation was assessed throughout the developmental zones of Arabidopsis thaliana root apex by whole-mount tubulin immunolabeling and confocal microscopy. Apart from the wild-type, thanatos and pom2-4 mutants of Cellulose SynthaseA3 and Cellulose Synthase Interacting1, respectively, were studied. Pharmacological and mechanical approaches inhibiting cell expansion were also applied. Cortical microtubules of untreated wild-type roots were predominantly transverse in the meristematic, transition and elongation root zones. Cellulose-deficient mutants, chemical inhibition of cell expansion, or growth in soil resulted in microtubule reorientation in the elongation zone, wherein cell length was significantly decreased. Combinatorial genetic and chemical suppression of cell expansion extended microtubule reorientation to the transition zone. According to the results, transverse cortical microtubule orientation is established in the meristematic root zone, persisting upon inhibition of cell expansion. Microtubule reorientation in the elongation zone could be attributed to conditional suppression of cell elongation. The differential responsiveness of microtubule orientation to genetic and environmental cues is most likely associated with distinct biophysical traits of the cells among each developmental root zone.  相似文献   

8.
R. Federico  R. Angelini 《Planta》1988,173(3):317-321
Diamine-oxidase (DAO; EC 1.4.3.6) activity and di-and polyamine levels were estimated along the epicotyl and root of light-grown and etiolated lentil (Lens culinaris Medicus) and pea (Pisum sativum L.) seedlings. The activity of DAO was higher in etiolated epicotyls than in lightgrown ones. In both species there was a positive correlation between DAO activity and the diamine (putrescine and cadaverine) levels along the whole epicotyl and root. Polyamine (spermine and spermidine) distribution seemed to be associated with the meristematic and elongating zone of the epicotyl and root. The physiological function of DAO is discussed in relation to its possible role in providing hydrogen peroxide to peroxidase-dependent reactions occurring in the cell wall.Abbreviations CAD cadaverine - DA diamine - DAO diamine oxidase - PA polyamine - PUT putrescine - SPD spermidine - SPM spermine  相似文献   

9.
The sulfhydryl inhibitor N-ethyl maleimide completely inhibited the reduction of 2,3,5-triphenyltetrazolium chloride in meristematic and embryonic vascular tissues of Coleus sp. stems, Ricinus communis root tips, ungerminated Tea mays embryos, and epicotyls and coleoptiles of germinated Tea mays embryos, in a concentration of 200 mg/lit. Inhibition was reversed by the addition of cysteine or reduced glutathione (200 mg/lit) to the inhibitor medium. N-ethyl maleimide was effective also in blocking the nitro-prusside and 1-(4-chIoromercuriphenylazo)-naphthol-2 sulfhydryl staining reactions, but other substituted maleimides were ineffective in inhibiting the tetrazolium reaction in these tissues. Experiments were conducted to determine the histological pattern of sulfhydryl groups as indicated by a modification of the Bennett 1-(4-chloro-mercuriphenylazo)-naphthol-2 test and a modification of the Rap-kine nitroprusside test in certain plant tissues. A positive correlation was observed between tissues reducing the tetrazolium indicator and tissues exhibiting sulfhydryl localization as indicated by the nitroprusside reagent (trichloroacetic acid pretreated) and 1—(4— chloromercuriphenylazo)—naphthol—2.  相似文献   

10.
Callus tissues originating fromZea mays root meristem, induced for rhizogenesis callus, meristematic and differentiated maize root cells for isolation of nuclei and acid-soluble chromosomal proteins were used. Cytological investigations proved that rhizogenesis begins with the formation of meristematic centres, followed by root differentiation about 5–12 days after the treatment with α-naphtalene acetic acid (NAA). When applying electrophoresis in 15% polyacrylamide gel, differences between the electrophoretic profiles of acid-soluble chromosomal proteins, isolated from root cells and from callus tissues, were established. The main differences concern histone H1 and probably H4. There are no differences between electrophoretic patterns of acid-soluble chromosomal proteins of nonorganized callus and callus induced for rhizogenesis. The possible explanation of these results is discussed.  相似文献   

11.
Vicia faba meristematic and elongating root cells (zones 0–4 and 10–20 mm) contained one nuclease (A1) and four ribonucleases (A2, A3, C1, C2). When the overall activity of each enzyme was expressed per cell, the elongating cells contained 4-, 4-, 4-, 10- and 17-fold more activity than meristematic cells for A1, C1, C2, A2 and A3, respectively.  相似文献   

12.
Laser ablation coupled with inductively coupled plasma-mass spectrometry was used to find Cu and Zn concentration in surface tissue along a longitudinal developmental gradient with meristem, rapidly elongating tissue, and nongrowing tissue in a model system of seedling roots of Cucumis sativus L. (cucumber). Tissue metal accumulation was determined for roots of seedlings growing on cellulosic germination paper treated with nutrient solution (controls), and also treated with concentrations of Zn (40 ppm) and Cu (10 ppm) that reduced growth. Cu content of all roots is highest at the apex and falls sharply to lower values by 2 mm from the root tip. In contrast, at moderate Zn availability (0.07 ppm), Zn content rises from the apex to 2 mm then falls throughout the remainder of the growth zone. At high external Zn the spatial pattern resembles that of Cu. Cucumber root growth zones accumulate more of each metal with higher external availability. Metal deposition rates were calculated using a continuity equation with data on local metal content and growth velocity. Deposition rates of both metals are generally highest in the rapidly elongating region, 1.5–3.5 mm, even where metal concentration is decreasing with position and root age and even when the accumulation is inhibitory to growth.  相似文献   

13.
Summary Cytochemical detection of ascorbic acid in cultured root tips of Zea mays shows that dividing cells accumulate ascorbic acid in the cytoplasm. The localization pattern alters in the root tip as the cells begin to elongate. In elongating cells ascorbic acid is distinctly localized on cell walls. Ascorbic acid content per cell inreases with the onset of cell elongation. Fully elongated cells contain fivefold more ascorbic acid than meristematic cells. Cytophotometric analysis reveals a sharp and positive correlation (r=+0.93) between percentage increase in content of ascorbic acid per cell and corresponding increase in cell size at different phases of cell elongation. IAA treatment to the roots raises the content of ascorbic acid per cell with a parallel increase in size of cell. Involvement of ascorbic acid in IAA induced cell elongation is discussed.  相似文献   

14.
A liquid meristematic root primordia culture (RPC) of Solanum lycopersicoides Dun. based on persistent rhizogenesis in a modified Murashige and Skoog (1962) medium supplemented with NAA (15 mg·l−1) or 2,4-D (1 mg·l−1) was described. The meristematic clumps (2–3 mm in diameter) originating from NAA supplemented medium were capable of regenerating plants through the callus stage (up to 70 %). Efficient direct plant regeneration (up to 21 %) was possible from numerous single globular-shaped root primordia (RP) structures liberated from the parental aggregates in 2,4-D supplemented proliferation medium without NH4NO3 and with a 2.5 fold increase in KNO3. The RP converted into plantlets (artificial seedlings) on solid or liquid media without growth growth regulators through the unipolar followed by the mace-shaped bipolar structure stages. The use of apical shoot bud, root apices or root segments as a primary explants brought about RPC induction and plant regeneration. The plants derived from 2 years old culture were phenotypically identical to their parental S. lycopersicoides plants and possessed the same ploidy.  相似文献   

15.
Abstract Lead migrating through the tissues of Allium cepa L. was found, by electron microscopy, autoradiography and other methods, to encounter at least three barriers to penetration. The layers of protoderm and hypodermic meristematic cells in the root meristematic zone and the layer of endodermis in the mature root zone were barriers to apoplastic transport. The central zone was a barrier to apoplastic and symplastic transport. It comprises the quiescent centre in the root meristem and the central part of the root cap. The cells of the deepest ground meristematic tissue layers seemed to act as a barrier, which keeps lead away from the procambium. Lead accumulated in roots but it was not uniformly distributed between their various tissues. The largest amount of lead accumulated both in ground meristematic and cortex tissues.  相似文献   

16.
Sachs , R. M., A. Lang , C. F. Bretz and Joan Roach . (U. California, Los Angeles.) Shoot histogenesis: subapical meristematic activity in a caulescent plant and the action of gibberellic acid and Amo—1618. Amer. Jour. Bot. 47(4): 260—266. Illus. 1960.–Studies on gibbereilininduced stem formation in rosette plants (Sachs et al., 1959) have shown that a zone of intensive meristematic activity, arising below the existing apical meristem, is almost solely responsible for stem histogenesis, i.e., the formation of the cells constituting the elongate stem. An extensive subapical zone of meristematic activity is also present in caulescent plants, such as Chrysanthemum morifolium, Amo-1618 ([4-hydroxy-5 isopropyl-2 methylphenyl] trimethylammonium chloride, 1-piperidine carboxylate) completely inhibits subapical meristematic activity in chrysanthemum, causing the plants to assume a dwarfed, rosette-like habit of growth. Gibberellic acid, applied either simultaneously, or following the Amo—1618 treatment, completely prevents or reverses the effect of Amo—1618, making the plants retain or resume their normal growth habit. Amo—1618 and gibberellic acid have relatively little effect upon the activity of the apical meristem of Chrysanthemum. Thus, while the apical meristem proper (eu- or promeristem) is the site of shoot organization and the ultimate source of the cells of the entire shoot, the subapical zone of division, termed the subapical meristem, is largely responsible for stem histogenesis in caulescent as well as in rosette plants. Gibberellins, or native, gibberellin-like substances appear to regulate the activity of the subapical meristem and thus to play an important role in shoot development. Amo—1618 and related compounds seem to exert their dwarfing effect in plants by acting as antagonists of gibberellins, at least with respect to the latters' function in regulating the subapical meristematic activity in the shoot.  相似文献   

17.
All of the roots of Selaginella selaginoides are attached laterally to the base of the shoot, which has monopolar growth as is characteristic of Selaginella. The first three roots are produced by meristematic activity in the cortex of the hypocotyl as in several other species of Selaginella. The fourth root is produced in the same way as the first three, except that not all of the cortical cells which become meristematic mature into root tissue. Some of the meristematic tissue remains undifferentiated and continues to produce additional roots. Potentially an unlimited number of roots could be produced, but no plant was found to have more than eight. There is some secondary growth in the cortex of the basal swelling on the hypocotyl, but no secondary vascular tissue is produced and no cambium of any sort is ever organized. On the basis of comparisons with other living species of Selaginella. the centralized root system of S. selaginoides is interpreted as having been modified from a noncentralized type of root system by the persistence of the juvenile mode of root production.  相似文献   

18.
19.
The level of endogenous Indol-3-yl-acetic acid (IAA) measured by gas chromatography-mass spectrometry in the elongating zone of intact primary roots of Zea mays showed a good linear correlation with the growth rate of these roots. When they were treated with IAA, their relative elongation decreased; this indicates a supraoptimal content of endogenous IAA. However, the growth of some of the relatively rapidly extending roots was enhanced by such treatment. Interactions between endogenous and applied IAA in the control of root growth are discussed.Abbreviations GC-MS gas chromatography-mass spectrometry - IAA Indol-3-yl-acetic acid  相似文献   

20.
Radiogas chromatographic studies of the products of fatty acid biosynthesis in mice brain microsomes confirm the existence of a «de novo system from acetyl-CoA and malonyl-CoA and of a least two elongating systems for long chain fatty acids, involving malonyl-CoA. The possibility of an intermediary system leading from C18 to C20 fatty acids has been evoked.Comparison between non mutant and quaking mice indicates that all the microsomal fatty acid biosynthetic systems are depressed. The biosynthetic system elongating fatty acids from C18 is the one which is the most modified quantitatively and qualitatively in quaking. Microsomal and soluble «de novo systems are qualitatively intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号