首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of sodium nitroprusside, a nitric oxide donor, and other nitrogen compounds (KNO3, KNO2, and (NH4)2SO4) on adhesion and penetration of nodule bacteria into root tissues of etiolated pea seedlings was studied. Only nitroprusside displayed a clearly negative effect on rhizobium adhesion and penetration and seedling growth. This effect was not observed with other nitrogen compounds even at high (20 mM) concentrations. Hemoglobin attenuated the negative effect of nitroprusside on bacteria and seedlings. The results are discussed in the context of the role of nitric oxide in the life of plants and nodule bacteria.  相似文献   

2.
We determined the biochemical characteristics of nitric oxide synthase (NOS) in hemocytes of the crayfish Procambarus clarkii and investigated the roles of hemocyte-derived NO in host defense. Biochemical analysis indicated the presence of a Ca2+ -independent NOS activity, which was elevated by lipopolysaccharide (LPS) treatment. When bacteria (Staphylococcus aureus) and hemocytes were co-incubated, adhesion of bacteria to hemocytes was observed. NO donor sodium nitroprusside (SNP) significantly increased the numbers of hemocytes to which bacteria adhered. Similarly, LPS elicited bacterial adhesion and the LPS-induced adhesion was prevented by NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). Finally, plate count assay demonstrated that addition of LPS to the hemocytes/bacteria co-incubation resulted in a significant decrease in bacterial colony forming unit (CFU), and that L-NMMA reversed the decreasing effect of LPS on CFU. The combined results demonstrate the presence of a Ca2+ -independent LPS-inducible NOS activity in crayfish hemocytes and suggest that hemocyte-derived NO is involved in promoting bacterial adhesion to hemocytes and enhancing bactericidal activity of hemocytes.  相似文献   

3.
The article studies the nitric oxide (NO) levels in the roots of etiolated seedlings of garden peas (Pisum sativum L.) using the DAF-2DA fluorescent probe and fluorescent microscopy. Cross sections of roots of 100-150 microm (the site of a root which is 10-15 mm from the apex) are analyzed. It is shown that the level of NO in the roots after 24 h increased by more than a factor of 2 in the versions with NaNO2 and sodium nitroprusside. At feeding the seedlings with KNO3, a peak in the accumulation of NO in the roots (twofold increase) was observed after 30 min. Fertilizing seedlings with L-arginine (2 mM) increased the intensity of the fluorescence of the root sections by more than a factor of 2. The inoculation of seedlings of rhizobia (Rhizobium leguminosarum by. viceae) contributed to the reduction of NO on the background of the control (H20) and sodium nitroprusside and nitrogen compounds. Scavengers of NO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), hemoglobin) and inhibitors of nitrate reductase and animal NO synthase (sodium tungstate and aminoguanidine hydrochloride) reduced the level of NO in the roots. The results are discussed in relation to the role of NO in plants under the influence of biotic and abiotic factors.  相似文献   

4.
Nitric oxide (NO*) is a gaseous mediator synthesized by nitric oxide synthases. NO* is involved in the modulation of inflammation, but its role in airway inflammation remains controversial. We investigated the role of NO* in the synthesis of the chemokines interleukin-8 and monocyte chemotactic protein-1, and of intercellular adhesion molecule-1 by human airway epithelial cells. normal human bronchial epithelial cells and the bronchial epithelial cell line BEAS-2B were used. interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) secretion and intercellular adhesion molecule-1 (ICAM-1) expression were measured by ELISA. mRNA was assessed by semiquantitative RTI-PCR. Interleukin-8 secretion was significantly reduced after 24h incubation with the NO* donor, sodium nitroprusside. The effect was dose-dependent. Similar results were obtained with S-nitroso-N-D,L-penicillamine and S-nitroso-L-glutathione. Inhibition of endogenous NO* with the nitric oxide synthase inhibitor N-nitro-L-arginine-methyl-ester caused an increase in IL-8 secretion by lipopolysaccharide- and cytokine-stimulated BEAS-2B cells. Sodium nitroprusside also caused a reduction in monocyte chemotactic protein-1 secretion by both cell types. In contrast, intercellular adhesion molecule-1 expression was upregulated by sodium nitroprusside. RTI-PCR results indicate that the modulation of protein levels was paralleled by modification in mRNA levels. NO* has divergent effects on the synthesis of different inflammatory mediators in human bronchial epithelial cells.  相似文献   

5.
Using different nitric oxide releasing compounds and appropriate controls we have obtained data strongly suggesting the involvement of nitric oxide in the phytochrome controlled germination of Paulownia tomentosa seeds. Direct detection of nitric oxide, under various experimental conditions, was performed by a spin-trapping technique combined with electron paramagnetic resonance (EPR) spectroscopy. The addition of methylene blue prevented light-induced and NO donors-potentiated germination of P. tomentosa seeds. This inhibition could be completely overcome by addition of gibberellin. The promotive effect of nitrite was pH dependent, maximally pronounced at the pH range where nitrite undergoes dismutation and liberates nitric oxide. Under these conditions, nitrite exerted its efficacy at the same concentrations at which nitric oxide releasing compounds such as sodium nitroprusside (SNP), S-nitroso acetylpenicillamine (SNAP), and 3-morpholinosydnonimine (SIN-1), were the most effective. Likewise, the potentiation of P. tomentosa seed germination could be achieved by chemical reduction of nitrite with Na2S2O4 during which liberation of nitric oxide could be detected.  相似文献   

6.
Ascorbate peroxidase is one of the major enzymes regulating the levels of H2O2 in plants and plays a crucial role in maintaining root nodule redox status. We used fully developed and mature nitrogen fixing root nodules from soybean plants to analyze the effect of exogenously applied nitric oxide, generated from the nitric oxide donor 2,2′-(hydroxynitrosohydrazono)bis-ethanimine, on the enzymatic activity of soybean root nodule ascorbate peroxidase. Nitric oxide caused an increase in the total enzymatic activity of ascorbate peroxidase. The nitric oxide-induced changes in ascorbate peroxidase enzymatic activity were coupled to altered nodule H2O2 content. Further analysis of ascorbate peroxidase enzymatic activity identified three ascorbate peroxidase isoforms for which augmented enzymatic activity occurred in response to nitric oxide. Our results demonstrate that nitric oxide regulates soybean root nodule ascorbate peroxidase activity. We propose a role of nitric oxide in regulating ascorbate-dependent redox status in soybean root nodule tissue.Key words: antioxidant enzymes, ascorbate peroxidase, nitric oxide, oxidative stress, reactive oxygen species, redox homeostasis, soybean root nodules  相似文献   

7.
A spectrophotometric method has been developed that uses extracellular hemoglobin (Hb) to trap nitric oxide (NO) released during denitrification as nitrosyl hemoglobin (HbNO). The rate of complexation of NO with Hb is about at the diffusion controlled limit for protein molecules and the product, HbNO, is essentially stable. Hb was added to an anaerobic bacterial suspension and denitrification was initiated with either KNO2 or KNO3. HbNO formation was observed for six species of denitrifying bacteria and showed isosbestic points at 544, 568, and 586 nm. Cellular NO production, presumably by nitrite reductase, was kinetically distinct from the much slower chemical reaction of Hb with KNO2 to form methemoglobin and HbNO. The rate of HbNO formation was proportional to cell density, essentially independent of pH from 6.8 to 7.4, nearly zero order in [Hb] and, at least with Paracoccus denitrificans, strongly inhibited by rotenone and antimycin A. The Cu chelator, diethyldithiocarbamate, had no effect on HbNO formation by Pa. denitrificans, but abolished that by Achromobacter cycloclastes which uses a Cu-containing nitrite reductase known to be inactivated by the chelator. HbNO formation did not occur with non-denitrifying bacteria. The stoichiometry at high [Hb] for conversion of Hb to HbNO was 1.3-1.8 KNO2 per Hb for Pa. denitrificans, Pseudomonas aeruginosa, and A. cycloclastes and about 3.4 for Pseudomonas stutzeri. The former range of values corresponds to a partition of about 2 N atoms in 3 toward trapping and 1 in 3 toward reduction on the pathway to N2. Nitrogen not trapped appeared largely as N2O in presence of acetylene. The results are consistent with a model in which NO is a freely diffusible intermediate between nitrite and N2O, providing that nitric oxide reductase is or nearly is a diffusion controlled enzyme.  相似文献   

8.
一氧化氮对豆科植物结瘤及固氮的影响机制   总被引:1,自引:0,他引:1  
豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。  相似文献   

9.
Abstract: Nitric oxide may regulate cellular respiration by competition with oxygen at mitochondrial cytochrome oxidase. Using an astrocyte-derived cell line, we have compared the mechanism of action of the nitric oxide-generating compound Roussin's black salt with that of sodium nitroprusside on cellular oxygen consumption. Intense light exposure induced the release of large quantities of nitric oxide from both of the donor compounds. However, in room light only Roussin's black salt generated low levels of the radical. Simultaneous measurement of oxygen consumption and of nitric oxide production demonstrated that sodium nitroprusside only had inhibitory actions when exposed to intense light (nitric oxide release), whereas Roussin's black salt had inhibitory actions in room light. Extracellular haemoglobin did not prevent the inhibition of respiration rate induced by Roussin's black salt even though stimulation of nitric oxide release on light exposure was markedly reduced. Preincubation of cells with Roussin's black salt and subsequent measurement of levels of light-liberated nitric oxide demonstrated that the compound was rapidly internalised. The uptake of sodium nitroprusside was minimal. These data suggest that, in contrast to sodium nitroprusside, the cellular internalisation of Roussin's black salt allows site-directed nitric oxide release and very effective inhibition of cellular respiration.  相似文献   

10.
The effect of methanol, ethanol, acetic acid and glucose together with NaNO2 or KNO3 (1,000 mg N/l) on the intensity of denitrification and selection of denitrifying bacteria from the bottom sludge of nitrogenous wastewater reservoir was examined. Denitrification was found to be the most efficient in medium with ethanol or acetic acid. The presence of glucose facilitated the selection of Alcaligenes faecalis whereas the other carbon sources enabled the selection of bacteria of the genus Pseudomonas: methanol -- P. fluorescens, ethanol -- P. mendocina. In medium with acetic acid species selection depends on the form of nitrogen: NaNO2 -- P. fluorescens, KNO3 -- P. aeruginosa.  相似文献   

11.
The effect of nitric oxide donor sodium nitroprusside on the end-plate currents was studied under two-electrode voltage-clamp condition at frog neuro-muscular junction. Sodium nitroprusside (10(-4) M) reduced to the half the amplitude of end-plate currents while did not change miniature end-plate currents indicating the presynaptic nature of end-plate depression. In keeping with such suggestion sodium nitroprusside essentially (to 33%) suppressed the frequency of miniature end-plate currents but did not affect the decay time constant and voltage-dependence of miniature end-plate decay. In contrast to another presynaptic inhibitors sodium nitroprusside rather reduced than increased the presynaptic facilitation and did not change postsynaptic potentials. Thus, nitric oxide is the powerful inhibitor of both evoked and spontaneous transmitter release and did not change postsynaptic potential.  相似文献   

12.
We investigated the effect of nitric oxide on the catalytic activity of 5'-nucleotidase associated with insoluble membrane domains (rafts) of pig stomach smooth muscle. The low concentration (0.1-10.0 microM) of nitric oxide donor sodium nitroprusside led to essential increase of catalytic activity of 5'-nucleotidase. Maximal increase was observed at concentration of sodium nitroprusside of 1 microM. The enzyme's catalytic activity decreased to about control value at higher concentration of this substance. The catalytic activity of 5'-nucleotidase was also increased at presence of NaNO2, but only at high concentration (10 mM).The specific thiol-alkylating agent N-ethylmaleinimide (1-100 microM) led to essential decrease of enzyme catalytic activity. Our data shows that nitric oxide changes the AMP-ase activity of 5'-nucleotidase, that is thought to be due to direct effect of this substance on protein. We suppose, that such effect of nitric oxide could be physiologicaly important in functioning of smooth muscle.  相似文献   

13.
一氧化氮 (NO)是近年来发现的一种新型植物信号分子。以硝普钠 (Sodiumnitroprusside ,SNP)为一氧化氮 (NO)的供体 ,研究外源NO对金丝桃悬浮细胞生长及金丝桃素生物合成的影响。试验结果表明 ,金丝桃悬浮细胞在含 0 5和 15 0mmol LSNP的培养基中培养 2 0d后 ,细胞的干重分别为对照组的 140%和50% ;细胞中金丝桃素的含量分别为对照组的 98%和210%。试验结果表明 ,低浓度SNP处理有利于金丝桃悬浮细胞生长 ,而高浓度SNP可以促进金丝桃素的合成。在细胞培养初期 (0d)加入 0.5mmol LSNP并在指数生长后期 (14d)加入15.0mmol LSNP的金丝桃悬浮细胞在培养 2.5d后 ,细胞的干重和金丝桃素的含量分别为对照组的1.4和1.8倍 ,金丝桃素的产量达15.2mg/L ,比对照高3.2倍。SNP对金丝桃悬浮细胞生长及金丝桃素含量的影响可以被NO专一性淬灭剂CPITO(2-4-carboxyphenyl-4 ,4 ,5 ,5-tetramethylimidazoline-1-oxyl-3-oxide)所抑制,说明SNP是通过其分解产物NO影响细胞生长和金丝桃素的合成。试验结果同时表明,在15.0mmol/L的SNP处理下,金丝桃悬浮细胞中的苯丙氨酸解氨酶(PAL)的活性显著升高,推测NO可能通过触发金丝桃悬浮细胞的防卫反应,激活了细胞中金丝桃素的生物合成途径。  相似文献   

14.
15.
Nitrate reductase (NR), a key enzyme in nitrogen metabolism, has been implicated in the production of nitric oxide (NO) in plants. The effect of photosynthetic electron transport chain inhibitors and NO scavengers or donors on NR activity of Gracilaria chilensis was studied under experimental laboratory conditions. Effective quantum yield (Φ PSII) and NR activity were significantly diminished by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, two photosynthetic electron flux inhibitors of photosystem (PS) II and PSI, respectively, but not by diphenyleneiodonium, a NADPH oxidase inhibitor, indicating a direct dependence of NR activity on the PSII and PSI electron flux. Nitrate reductase activity was sensitive to a decrease or increase of NO levels when NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and NO donor (sodium nitroprusside) were added. Moreover, the addition of 8Br-cGMP, a secondary signal molecule, stimulated NR activity. These results evidence a modulation of the photosynthetic electron transport chain and NO balance on G. chilensis NR activity. This association could be linked to the crucial tight modulation of nitrogen assimilation and carbon metabolism to guarantee nitrite incorporation into organic compounds and to avoid toxicity by nitrite, reactive oxygen species, or nitric oxide in the cells. Nitric oxide showed to be an important signaling molecule regulating NR activity and cGMP could participate as secondary messenger on this regulation by phosphorylation and desphosphorylation processes.  相似文献   

16.
Biofilms are a widespread form of occurrence of microorganisms in nature, and understanding the mechanism of regulation of their formation is of unquestionable practical significance for medicine and biotechnology. In the present work, the effect of nitric oxide (NO) on biofilm formation by Lactobacillus plantarum was investigated and the micromolar concentrations of exogenous NO were shown to have a negative effect on this process due to its toxic effect on the cells. However, the decrease in the level of endogenous NO in bacteria in the presence of a nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) impaired the characteristics of the forming biofilms, as was evident from the decrease in their size.  相似文献   

17.
Maxi-circles and mini-circles in kinetoplast DNA from trypanosoma cruzi   总被引:6,自引:0,他引:6  
Glyceryl trinitrate specifically required cysteine, whereas NaNO2 at concentrations less than 10 mM required one of several thiols or ascorbate, to activate soluble guanylate cyclase from bovine coronary artery. However, guanylate cyclase activation by nitroprusside or nitric oxide did not require the addition of thiols or ascorbate. Whereas various thiols enhanced activation by nitroprusside, none of the thiols tested enhanced activation by nitric oxide. S-Nitrosocysteine, which is formed when cysteine reacts with either NO-2 or nitric oxide, was a potent activator of guanylate cyclase. Similarly, micromolar concentrations of the S-nitroso derivatives of penicillamine, GSH and dithiothreitol, prepared by reacting the thiol with nitric oxide, activated guanylate cyclase. Guanylate cyclase activation by S-nitrosothiols resembled that by nitric oxide and nitroprusside in that activation was inhibited by methemoglobin, ferricyanide and methylene blue. Similarly, guanylate cyclase activation by glyceryl trinitrae plus cysteine, and by NaNO2 plus either a thiol or ascorbate, was inhibited by methemoglobin, ferricyanide and methylene blue. These data suggest that the activation of guanylate cyclase by each of the compounds tested may occur through a common mechanism, perhaps involving nitric oxide. Moreover, these findings suggest that S-nitrosothiols could act as intermediates in the activation of guanylate cyclase by glyceryl trinitrate, NaNO2 and possibly nitroprusside.  相似文献   

18.
Highly purified rat lung soluble guanylate cyclase was activated with nitric oxide or sodium nitroprusside and the degree of activation varied with incubation conditions. With Mg2+ as the action cofactor, about 2- to 8-fold activation was observed with nitric oxide or sodium nitroprusside alone. Markedly enhanced activation (20-40 fold) was observed when 1 muM hemin added to the enzyme prior to exposure to the activating agent. The activation with hemin and sodium nitroprusside was prevented in a dose-dependent manner by sodium cyanide. The level activation was also increased by the addition of 1 mM dithiothreitol, but unlike hemin which had no effect on basal enzyme activity, dithiothreitol led to a considerable increase in basal activity. Activated guanylate cyclase decayed to basal activity within one hour at 2 degrees C and the enzyme could be reactivated upon re-exposure to nitroprusside or nitric oxide. Under basal conditions, Michaelis-Menten kinetics were observed, with a Km for GTP of 140 muM with Mg2+ cofactor. Following activation with nitroprusside or nitric oxide, curvilinear Eadie-Hofstee transformations of kinetic data were observed, with Km's of 22 MuM and 100 MuM for Mg-GTP. When optimal activation (15-40 fold) was induced by the addition of hemin and nitroprusside, multiple Km's were also seen with Mg-GTP and the high affinity form was predominant (22 MuM). Similar curvilinear Eadie-Hofstee transformations were observed with Mn2+ as the cation cofactor. These data suggest that multiple GTP catalytic sites are present in activated guanylate cyclase, or alternatively, multiple populations of enzyme exist.  相似文献   

19.
There are conflicting reports in the literature concerning the neuroprotective effect of ascorbic acid on excitotoxic processes in which excessive glutamate release and nitric oxide are supposed to be major factors. To study the influence of ascorbate on the nitric oxide modulated glutamate release rat striatal slices, preloaded with the tritiated glutamate analog D-aspartate, were used. The high potassium-induced efflux of D-[3H]aspartate was concentration dependently stimulated by the nitric oxide donors sodium nitroprusside, S-nitroso-N-acetylpenicillamine (SNAP) or 5-amino 3-morpholinyl-1,2,3-oxadiazolium chloride (SIN-1), as well as by solutions of gaseous nitric oxide and, interestingly, by cyanide. Only the stimulation of D-[3H]aspartate release by SNAP and nitroprusside was affected by ascorbate in terms of a highly significant potentiation. Ascorbate was shown to exert its effect primarily by influencing the decomposition of these nitric oxide donors rather than by a direct interaction of ascorbate with nitric monoxide on glutamate release.  相似文献   

20.
Synthetic nitric oxide donors are known to protect the gastric mucosa from damage and dietary nitrate is known to release NO in the stomach. Mast cells have been found to be involved in gastric mucosal damage in humans or in rodents, and recent studies have pointed out the possibility of nitric oxide from endogenous or exogenous origin to modulate mast cell reactivity. This study aimed to determine whether the protective effect afforded by dietary nitrate against gastric mucosal damage was linked to mast cell stabilization. Mast cell involvement in iodoacetamide-induced gastritis was investigated in rats receiving oral administration of iodoacetamide together with the mast cell stabilizer doxantrazole (ip) or its solvent. The effects of dietary nitrate on mast cells during gastritis were investigated in rats receiving iodoacetamide orally, associated or not with KNO3. Control groups were given water instead of iodoacetamide either with or without KNO3, doxantrazole or its solvent. After sacrifice, blood samples were taken to determine RMCP II serum level and the stomach was resected in order to determine myeloperoxidase (MPO) activity and mucosal mast cell (MMC) number. Iodoacetamide significantly increased gastric MPO activity but did not modify RMCP II serum level or MMC number. Doxantrazole and KNO3 significantly reduced iodoacetamide-induced increase in gastric MPO activity, increased MMC number, and decreased RMCP II serum level in basal conditions. Only doxantrazole was able to modify all parameters under inflammatory conditions. These results suggest that nitric oxide released by dietary nitrate in the stomach stabilizes mast cells in basal conditions but exerts its protective effect against experimental gastritis through other pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号