首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pine seedlings are able to accumulate chlorophylls and develop green plastids in a light-independent manner. In this work, we have characterized ferredoxin-dependent glutamate synthase (EC 1.4.7.1; Fd-GOGAT), a key enzyme in nitrogen interconversion during this process. Fd-GOGAT has been purified about 170-fold from cotyledons of maritime pine (Pinus pinaster). As occurs in angiosperms, the native enzyme is a single polypeptide with an apparent molecular mass of 163–168 kDa that is confined to the chloroplast stroma. Polyclonal antibodies generated against the purified enzyme were used to immunoscreen a gt11 expression library from Scots pine (Pinus sylvestris) seedlings and partial cDNA clones were isolated and characterized. The clone with the longest cDNA insert (pGOP44) contained the codification for the C-terminal (550 amino acids) of the pine Fd-GOGAT polypeptide. Immunological cross-reactivity and comparative amino sequence analysis revealed that Fd-GOGAT is a well conserved protein in higher plants. Western blot analyses showed that protein was expressed in chloroplast-containing pine tissues and this expression pattern was not affected by exogenously supplied nitrogen. Fd-GOGAT mRNA, polypeptide and enzyme activity accumulated in substantial amounts in dark-grown pine seedlings. The presence of a functional Fd-GOGAT may be important to provide the required glutamate for the biosynthesis of nitrogen compounds during chloroplast biogenesis in the dark.  相似文献   

2.
3.
4.
Summary The presence of multiple molecular forms (MMF) of glutamine synthetase (GS) has been studied in pumpkin plants and in cotyledons of bean plants. Two MMF of GS have been found in pumpkin leaves and in green cotyledons: chloroplast GS and cytosol GS. Cotyledons of etiolated pumpkin seedlings contain only the cytosol GS. Illumination of etiolated pumpkin seedlings with white light results in the appearance, within one minute, of the second molecular form, the chloroplast GS, which appears to be due to activation rather than de novo synthesis of the enzyme. Cotyledons of resting seeds of horse bean, pea, soybean and lupine contain only one form of GS. The second form, chloroplast GS, appears after germination in the light, but only in those cotyledons of soybean and lupine that can become green.  相似文献   

5.
Summary NADPH : protochlorophyllide oxidoreductase (pchlide reductase, EC 1.6.99.1) catalyzes the light-dependent reduction of protochlorophyllide in higher plants. Cloned cDNAs encoding two distinct pchlide reductases were isolated from a gt11 library constructed from poly(A)+ RNA prepared from the cotyledons of dark-grown white pine (Pines strobes) seedlings and a nuclear gene (lpcr) analogous to one of these cDNAs has been characterized from loblolly pine (P. taeda). The pine gene encodes an approximately 43 kDa precursor polypeptide consisting of a 334-amino acid mature protein and a 66-amino acid transit peptide. The deduced primary structures for the pine proteins are highly homologous to those reported from monocots and dicots. The coding portion of the pine lpcr gene is interrupted by four introns. The placement of these introns within the pine lpcr gene is identical to that observed in pea (Pisum sativum), suggesting conservation in gene organization between dicot and gymnosperm species. Western blot analysis using polyclonal antiserum against oat pchlide reductase detected in extracts of dark-grown pine cotyledons a single immunoreactive protein, which declined in abundance during a 48 h period of illumination with white light. Cotyledons of dark-grown seedlings were also found to accumulate high levels of pchlide reductase mRNA; however, little or no change in the steady-state levels of mRNA encoding pchlide reductase was observed in these tissues following illumination. Stem tissue of dark-grown seedlings did not contain significant levels of pchlide reductase mRNA, whereas stems of light-grown plants of the same age accumulated substantial amounts of the message. These results suggest that light and the developmental age of the tissue affect regulation of lpcr expression in pine.  相似文献   

6.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

7.
Polyamines and guanidines enhanced the growth of radish seedlings grown in dark or light, irrespective of the supply of nitrogen. All the compounds inhibited ntirate reducatase and glutamine synthetase in the cotyledons of light-grown but not in dark-grown seeds. Nitrite reductase and glutamate dehydrogenase were not affected. Protease activity was enhanced by all the compounds in dark-as well as in light-grown seeds. Alanine aminotransferase activity was increased only in the light-grown seeds. The inhibition of nitrate reductase was not due to decreased nitrate uptake but was due to a decreased metabolic pool of nitrate and a decline in enzyme synthesis. The inhibition of glutamine synthetase and activation of alanine aminotransferase by the compounds was found only in the chloroplast fraction. The activation of protease was due to the release or activation of preexisting enzyme while that of alanine aminotransferase was dependent on the de novo protein synthesis which was abolished by cycloheximide.  相似文献   

8.
J. H. Lukens  R. D. Durbin 《Planta》1985,165(3):311-321
Ultrastructural and biochemical approaches were used to investigate the mode of action of tagetitoxin, a nonhost-specific phytotoxin produced by Pseudomonas syringae pv. tagetis (Hellmers) Young, Dye and Wilkie, which causes chlorosis in developing — but not mature — leaves. Tagetitoxin has no effect on the growth rate or morphology of developing leaves of wheat (Triticum aestivum L.) seedlings. Its cytological effects are limited to plastid aberrations; in both light-and dark-grown leaves treated with toxin, internal plastid membranes fail to develop normally and plastid ribosomes are absent, whereas mitochondrial and cytoplasmic ribosomes are unaffected. The activity of a plastid stromal enzyme, ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), which is co-coded by nuclear and chloroplast genes, is markedly lower in extracts of both light-and dark-grown toxin-treated leaves, whereas the activity of another stromal enzyme, NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G-3P-DH, EC 1.2.1.13), which is coded only by the nuclear genome, is significantly lower in extracts of light-grown, but not of dark-grown, treated leaves. The mitochondrial enzymes fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) are unaffected by toxin in dark-grown leaves, but fumarase activity is reduced in light-grown ones. Four peroxisomal enzyme activities are lowered by toxin treatment in both light- and dark-grown leaves. Light- and dark-grown, toxintreated leaves contain about 50% and 75%, respectively, of the total protein of untreated leaves. There are threefold and twofold increases in free amino acids in light-grown and dark-grown treated leaves, respectively. In general, the effects of tagetitoxin are more extensive and exaggerated in light-grown than in dark-grown leaves. We conclude that tagetitoxin interferes primarily with a light-independent aspect of chloroplast-specific metabolism which is important in plastid biogenesis.Abbreviations NADP-G-3-DH NADP-glyceraldehyde-3-phosphate dehydrogenase - PLB prolamellar body - RuBP-Case ribulose-1,5-bisphosphate carboxylase - SADH shikimic acid dehydrogenase  相似文献   

9.
Lower plants and gymnosperms synthesize chlorophyll and develop photosynthetically competent chloroplasts even when grown in the dark. In cell-free extracts of pine (Pinus mugo, Turra, ssp. mugo) seedlings, light-independent and light-dependent protochlorophyllide-reducing activities are present. Two distinct NADPH-protochlorophyllide-oxidoreductase (POR) polypeptides can be detected immunologically with an antiserum raised against the POR of barley. The subcellular localization and amounts of the two POR polypeptides are differentially affected by light: one of them is predominantly present in prolamellar bodies of etiochloroplasts and its abundance rapidly declines once the pine seedlings are exposed to light; the other is found in thylakoid membranes and its amount does not change during illumination of dark-grown seedlings. Two types of cDNA sequences are identified that encode two distinct POR polypeptides in pine. The relevance of these POR polypeptides for the two chlorophyll biosynthetic pathways active in gymnosperms is discussed.  相似文献   

10.
11.
12.
13.
Ten Arabidopsis lines that carry recessive mutations in the cop1 (constitutively photomorphogenic) locus have been isolated. These lines define at least four different alleles. All of the mutant lines produce dark-grown seedlings that mimic wild-type seedlings grown in the light. The phenotype of the dark-grown mutant seedlings includes: short hypocotyls, open and enlarged cotyledons, accumulation of anthocyanin, cell-type differentiation and chloroplast-like plastid differentiation in cotyledons. Moreover, in more prolonged dark-growth periods the mutants exhibit true leaf development that parallels that in light-grown siblings. The four mutant alleles represent two types of mutations: three alleles (cop 1-1, cop 1-2, and cop 1-3) have severely affected phenotypes whereas one allele (cop 1-4) has a less severe phenotype. Compared to the severe alleles, the cop 1-4 mutant has slightly longer hypocotyls in dark-grown seedlings and does not accumulate abnormal levels of anthocyanin. The cop1–1/cop1-4 hybrid seedlings are intermediate in many physiological properties under both dark- and light-growth conditions, relative to the two parents. These results may suggest that the extent of residual cop1 gene activity in the mutants dictates the degree to which the aberrant plant phenotype is expressed. Analysis of plants carrying both cop1 and hy, a mutation that results in a deficiency of active phyto-chrome, suggests that the cop1 gene product acts downstream of phytochrome. The differentiation of chloroplasts in the roots of light-grown cop1 plants but not in wild-type plants suggests that the wild-type cop1 gene product also normally plays a role in suppressing chloroplast development in the roots of light-grown plants. To aid the eventual molecular cloning of the cop1 locus, its chromosomal location has been mapped and a molecular marker that is located about 1 centimorgan away from the cop1 locus obtained.  相似文献   

14.
15.
A study was conducted comparing the organization of chlorophyll during development of the photosynthetic apparatus in dark-grown and light-grown pine and barley. The rationale was that gymnosperms, but not angiosperms, have a capacity to synthesize chlorophyll in darkness. Seedlings of Pinus brutia were germinated and grown in darkness or under photoperiodic (day/night) conditions. The low-temperature (77 K) fluorescence spectra of newly-emerging dark-grown seedlings exhibited a single fluorescence band peaking at 678–679 nm, which decayed primarily with a ∼5.5 ns lifetime. Over the first few days of growth, the emission shifted to longer wavelengths and a subnanosecond lifetime component became prevalent. After several days of dark growth the emission spectrum and lifetime profile of the low temperature fluorescence came to resemble those of light-grown pine and barley. At room temperature, dark-grown pine showed little variable fluorescence, though addition of DCMU caused a substantial fluorescence rise. Illumination with moderate light for a few hours was sufficient to 'photoinduce' the appearance of normal variable fluorescence. At 77 K, DCMU-treated samples clearly showed a very long-lived (∼40 ns) fluorescence lifetime component in light-grown pine and barley. This component was undetectable in dark-grown pine. If, however, dark-grown samples were illuminated either before or after DCMU addition and then frozen to 77 K, the ∼40 ns lifetime component appeared at a fluorescence intensity similar to that in light-grown samples. These results are explained primarily in terms of photoactivation of the photosystem II (PSII) donor side. The temporary maintenance of PSII in an inactive, highly-quenched state is suggested to provide an available, yet protected precursor for active PSII.  相似文献   

16.
Primary leaf segments from 8-day-old dark-grown, and from 4- and 8-day-old light-grown seedlings of Zea mays L. cv. Fronica, were treated with 10-bM benzyladenine (BA) in the dark for 14 h. The segments were then studied after an exposure to light for 14 h. Photosynthetic activity (O2 evolution and CO2 fixation) and chlorophyll accumulation were stimulated by BA in dark-grown leaf segments with etioplastids in the earliest stage of development. In these segments BA stimulated the activities of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), phosphoenolpyruvate carboxylase (EC 4.1.1.31), NADP+-malic enzyme (EC 1.1.1.40) and pyruvate, orthophosphate dikinase (EC 2.7.9.1). In segments taken from 4- and 8-day light-grown seedlings, BA did not enhance the photosynthetic activity nor the chlorophyll accumulation. The activity of the enzymes mentioned above, was significantly enhanced by the BA-treatment. BA mainly affected grana stacking in mesophyll cell chloroplasts in primary leaf segments taken from 3- to 5-day light-grown seedlings. Stroma thylakoid development was stimulated only in leaf segments from 3-day-old plants. At the same time BA accelerated grana loss in chloroplasts of bundle sheath cells, a typical phenomenon of development in such chloroplasts. Stroma thylakoid length in these chloroplasts increased by a BA treatment in segments from 3- and 4-day light-grown plants. A significantly higher number of chloroplasts was only observed with segments taken from 8-day light-grown seedlings and treated with BA. The etiochloroplast number in segments taken from 8-day etiolated plants was significantly higher in BA-treated segments after 26 h illumination. In etiochloroplasts from both mesophyll and bundle sheath cells, BA enhanced grana stacking after illumination for 4 h or more, whereas stroma membrane length was significantly higher only after 26 h light. It is concluded that the effects of BA depend on the developmental stage. BA accelerates the development of mesophyll and bundle sheath cell (etio)chloroplasts, but does not affect the ultrastructure of mature chloroplasts.  相似文献   

17.
18.
Pinus palustris has a greatly reduced need for light to initiate chloroplast development in comparison to angiosperms. Light is not required for chlorophyll synthesis in dark-grown Pinus palustris seedlings. However, embryos do not contain chlorophyll, and synthesis is limited to seedlings having cotyledon lengths between about 0.5 cm and 2.0 cm. The final amount of chlorophyll accumulated by dark-grown seedlings is about one fifth of that in light-grown seedlingsat the same stage. The major light-harvesting chlorophyll a/b-polypeptides of Photosystem II (LHC IIb) are absent in the embryos but begin to accumulate in seedlings of 0.5 cm cotyledon length, irrespective of the light conditions. Although dark-grown seedlings accumulate most of the pigmented complexes seen in light-grown seedlings, there are differences in the subunit structure of some of them. These findings suggest that the majority of the components of the photosynthetic membrane do not require light for induction of synthesis or assembly into complexes, but that the final forms seen in light-grown seedlings may require light.Abbreviations ALA 5-amino levulinic acid - glucoside -D-glucopyranoside - LHC light-harvesting complex - lhc genes encoding LHCs - PS photosystem  相似文献   

19.
In higher plants, ammonium is assimilated into amino acids through the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle. This metabolic cycle is distributed in different cellular compartments in conifer seedlings: glutamine synthesis occurs in the cytosol and glutamate synthesis within the chloroplast. A method for preparing intact chloroplasts of pine cotyledons is presented with the aim of identifying a glutamine–glutamate translocator. Glutamine–glutamate exchange has been studied using the double silicone layer system, suggesting the existence of a translocator that imports glutamine into the chloroplast and exports glutamate to the cytoplasm. The translocator identified is specific for glutamine and glutamate, and the kinetic constants for both substrates indicate that it is unsaturated at intracellular concentrations. Thus, the experimental evidence obtained supports the model of the GS/GOGAT cycle in developing pine seedlings that accounts for the stoichiometric balance of metabolites. As a result, the efficient assimilation of free ammonia produced by photorespiration, nitrate reduction, storage protein mobilisation, phenylpropanoid pathway or S‐adenosylmethionine synthesis is guaranteed.  相似文献   

20.
This investigation was conducted to observe changes in the compositions of fatty acids, glycolipids (GL) and phospholipids (PL) in cotyledons of soybean seeds which were germinated either in the dark or the light at 28°C for 8 days. The patterns of changes in lipid composition depended on the germinating conditions tested. In general, non-polar lipids were metabolized at a faster rate than polar lipids. Changes in lipid contents in cotyledons were also observed more clearly with the polar lipids than with the non-polar ones, especially in the light-grown seedlings. The major component of lipid, GL in chloroplasts, appeared rapidly at an earlier stage in the cotyledons of light-grown seedlings. During germination of soybean seeds, acyl sterylglucoside in cotyledons decreased rapidly, but monogalactosyl diglyceride and digalactosyl diglyceride (DGD) increased in the light-grown seedlings, whereas sterylglucoside and DGD increased in the dark-grown seedlings.

The major PL present immediately after immersion were phosphatidyl ethanolamine (PE), phosphatidyl choline (PC) and phosphatidyl inositol (PI). During germination under both conditions, light and dark, PE in cotyledons decreased with PC or PI, while phosphatidic acid increased rapidly, and phosphatidyl glycerol and diphosphatidyl glycerol also increased slightly. These changes in glycolipid and phospholipid compositions during germination seem to occur from the formation of photosynthetic tissues and the metabolic interconversion of phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号