首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The purpose of this study was to investigate the expression of collagen type I and the mRNA level of its regulatory factor, TGF-β1, in tissue samples of acute pancreatitis and to determine the significance of collagen type I in predisposition to pancreatic fibrosis during acute pancreatitis.

Methods

Sprague–Dawley rats were divided into an experimental group (30 rats) and a control group (12 rats). The rats in the experimental group were intraperitoneally injected with cerulein to induce acute pancreatitis. The distribution and expression of collagen type I in the pancreatic tissues were examined by immunohistochemical staining. The mRNA level of TGF-β1 was determined by real-time polymerase chain reaction (PCR).

Results

(1) Collagen type I was localized in the cytoplasm of pancreatic acinar cells. With pancreatitis progressed, strong positive staining for collagen type I covered whole pancreatic lobules, whereas, the islet tissue, interlobular area, and pancreatic necrotic area were negative for collagen type I. (2) The level of TGF-β1 mRNA in rats from the experimental group increased gradually the establishment of acute pancreatitis, and was significantly higher than that in the control group at every time point.

Conclusions

(1) During acute pancreatitis, pancreatic acinar cells, not pancreatic stellate cells as traditionally believed, were the naïve effector cells of collagen type I. (2) TGF-β1 played a key role in regulating collagen I expression during acute pancreatitis.  相似文献   

2.
3.
The proteins expressed in pancreatic acinar cells during the initiation of acute pancreatitis may determine the severity of the disease. Cerulein pancreatitis is one of the best characterized models for acute pancreatitis. Present study aims to determine the differentially expressed proteins in cerulein-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. Rat pancreatic acinar AR42J cells were treated with 10(-8)M cerulein for 12h. The protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were compared between the cells treated without cerulein and those with cerulein. The changed proteins were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. As a result, 10 proteins (Orp150 protein, protein disulfide isomerase related protein, dnaK-type molecular chaperone hsp72-ps1, mitochondrial glutamate dehydrogenase, similar to chaperonin containing TCP-1 beta subunit, RuvB-like protein 1, heterogeneous nuclear ribonucleoprotein H1, aldehyde reductase 1, triosephosphate isomerase 1, peroxiredoxin 2) were up-regulated while four proteins (vasolin-containing protein, 78 kDa glucose-regulated protein precursor, heat shock protein 8, adenosylhomocysteinase) were down-regulated by cerulein in pancreatic acinar AR42J cells. These proteins are related to chaperone, cell defense mechanism against oxidative stress or DNA damage, anti-apoptosis and energy generation. The differentially expressed proteins by ceruein share their functional roles in pancreatic acinar cells, suggesting the possible involvement of oxidative stress, DNA damage, and anti-apoptosis in pathogenesis of acute pancreatitis. Proteins involved in cellular defense mechanism and energy production may protect pancreatic acinar cells during the development of pancreatitis.  相似文献   

4.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.  相似文献   

5.
6.
7.
目的:研究L-精氨酸和雨蛙素分别诱导SD大鼠急性胰腺炎(AP)模型的差异,为进一步研究急性胰腺炎提供可靠模型。方法:L-精氨酸采用3次腹腔注射,间隔1 h,雨蛙素采用7次腹腔注射,间隔1 h诱导急性胰腺炎模型。碘-淀粉比色法检测血清淀粉酶水平,血清脂肪酶测定试剂盒检测脂肪酶活性,胰腺组织切片观察组织的破坏情况,TUNEL法检测腺泡细胞凋亡。结果:①L-精氨酸诱导的大鼠模型血清淀粉酶和脂肪酶水平在诱导成功后6 h即显著升高,蛙皮素诱导的大鼠模型在12 h显著升高,与正常对照组比较均有统计学差异(P<0.05),提示急性胰腺炎建模成功。②L-精氨酸诱导的模型中胰腺组织结构破坏,有大片出血坏死灶、大量炎细胞浸润;而蛙皮素诱导的模型组织腺泡、间质水肿,炎性细胞浸润,少量散在出血坏死灶,血管变化常不明显,渗液清亮。结论:L-精氨酸和雨蛙素均能诱导SD大鼠急性胰腺炎模型,L-精氨酸诱导重症急性胰腺炎,雨蛙素诱导轻型急性胰腺炎,是研究急性胰腺炎的良好模型。  相似文献   

8.
Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 microg.kg(-1).h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappaB activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappaB activation was reduced by probiotics (0.20 vs. placebo 0.53 OD(450nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 micromol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 miccromol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.  相似文献   

9.
10.
In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and alpha-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 microg/kg/h i.v. or 10 microg/kg/h i.p.) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum alpha-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous i.p. administration of cerulein and WGA or UEA in a dosage of 125 microg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1+/-2.0 microm (cerulein) to 7.5+/-1.1 microm (cerulein + WGA) or 7.2+/-1.3 microm (cerulein + UEA). The serum amylase activity was reduced from 63.7+/-15.8 mmol/l x min (cerulein) to 37.7+/-11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.  相似文献   

11.
Pancreatitis is a common and potentially lethal necro-inflammatory disease with both acute and chronic manifestations. Current evidence suggests that the accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic disease, which is associated with an increased risk of pancreatic cancer. While parathyroid hormone-related protein (PTHrP) exerts multiple effects in normal physiology and disease states, its function in pancreatitis has not been previously addressed. Here we show that PTHrP levels are transiently elevated in a mouse model of cerulein-induced AP. Treatment with alcohol, a risk factor for both AP and chronic pancreatitis (CP), also increases PTHrP levels. These effects of cerulein and ethanol are evident in isolated primary acinar and stellate cells, as well as in the immortalized acinar and stellate cell lines AR42J and irPSCc3, respectively. Ethanol sensitizes acinar and stellate cells to the PTHrP-modulating effects of cerulein. Treatment of acinar cells with PTHrP (1-36) increases expression of the inflammatory mediators interleukin-6 (IL-6) and intracellular adhesion protein (ICAM-1), suggesting a potential autocrine loop. PTHrP also increases apoptosis in AR42J cells. Stellate cells mediate the fibrogenic response associated with pancreatitis; PTHrP (1-36) increases procollagen I and fibronectin mRNA levels in both primary and immortalized stellate cells. The effects of cerulein and ethanol on levels of IL-6 and procollagen I are suppressed by the PTH1R antagonist, PTHrP (7-34). Together these studies identify PTHrP as a potential mediator of the inflammatory and fibrogenic responses associated with alcoholic pancreatitis.  相似文献   

12.
Ohmuraya M  Yamamura K 《Autophagy》2008,4(8):1060-1062
Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.  相似文献   

13.
Cyclooxygenase-2 (COX-2), a widely distributed enzyme, plays an important role in inflammation. We have studied the role of COX-2 in acute pancreatitis and pancreatitis-associated lung injury using both the pharmacological inhibition of COX-2 and genetic deletion of COX-2. Pancreatitis was induced in mice by 12 hourly injections of cerulein. The severity of pancreatitis was assessed by measuring serum amylase, pancreatic trypsin activity, intrapancreatic sequestration of neutrophils, and acinar cell necrosis. The severity of lung injury was evaluated by measuring lactate dehydrogenase levels in the bronchoalveolar lavage fluid and by quantitating neutrophil sequestration in the lung. In both the pharmacologically inhibited and genetically altered mice, the severity of pancreatitis and pancreatitis-associated lung injury was reduced compared with the noninhibited strains of COX-2-sufficient mice. This reduction in injury indicates that COX-2 plays an important proinflammatory role in pancreatitis and its associated lung injury. Our findings support the concept that COX-2 inhibitors may play a beneficial role in the prevention of acute pancreatitis or in the reduction of its severity.  相似文献   

14.
15.
Clinical studies indicate that cigarette smoking increases the risk for developing acute pancreatitis. The nicotine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a major cigarette smoke toxin. We hypothesized that NNK could sensitize to pancreatitis and examined its effects in isolated rat pancreatic acini and in vivo. In acini, 100 nM NNK caused three- and fivefold activation of trypsinogen and chymotrypsinogen, respectively, above control. Furthermore, NNK pretreatment in acini enhanced zymogen activation in a cerulein pancreatitis model. The long-term effects of NNK were examined in vivo after intraperitoneal injection of NNK (100 mg/kg body wt) three times weekly for 2 wk. NNK alone caused zymogen activation (6-fold for trypsinogen and 2-fold for chymotrypsinogen vs. control), vacuolization, pyknotic nuclei, and edema. This NNK pretreatment followed by treatment with cerulein (40 μg/kg) for 1 h to induce early pancreatitis responses enhanced trypsinogen and chymotrypsinogen activation, as well as other parameters of pancreatitis, compared with cerulein alone. Potential targets of NNK include nicotinic acetylcholine receptors and β-adrenergic receptors; mRNA for both receptor types was detected in acinar cell preparations. Studies with pharmacological inhibitors of these receptors indicate that NNK can mediate acinar cell responses through an nonneuronal α(7)-nicotinic acetylcholine receptor (α(7)-nAChR). These studies suggest that prolonged exposure to this tobacco toxin can cause pancreatitis and sensitize to disease. Therapies targeting NNK-mediated pathways may prove useful in treatment of smoking-related pancreatitis.  相似文献   

16.
The pancreas is vulnerable to ethanol toxicity, but the pathogenesis of alcoholic pancreatitis is not fully defined. The intracellular oxidative balance and the characteristics of the secretion of isolated rat pancreatic acinar cells stimulated with the cholecystokinin analogue cerulein were assayed after acute oral ethanol (4 g/kg) load. Pancreatic acinar cells from ethanol-treated rats showed a significant (p < 0.02) lower content of total glutathione and protein sulfhydryls, and higher levels of oxidized glutathione (p < 0.03), malondialdehyde, and protein carbonyls (p < 0.05). Ethanol-intoxicated acinar cells showed a lower baseline amylase output compared to controls, with the difference being significantly exacerbated by cerulein stimulation. After cerulein, the release of protein carbonyls by ethanol-treated cells was significantly increased, whereas that of protein sulfhydryls was significantly decreased. In conclusion, ethanol oxidatively damages pancreatic acinar cells; cerulein stimulation is followed by a lower output of amylase and by a higher release of oxidized proteins by pancreatic acinar cells from ethanol-treated rats. These findings may account for the decreased exocrine function, intraductular plug formation, and protein precipitation in alcoholic pancreatitis.  相似文献   

17.
NADPH oxidase has been considered a major source of reactive oxygen species in phagocytic and non-phagocytic cells. Apoptosis linked to oxidative stress has been implicated in pancreatitis. Recently, we demonstrated that NADPH oxidase subunits Nox1, p27phox, p47phox, and p67phox are constitutively expressed in pancreatic acinar cells, which are activated by cerulein, a cholecystokinin analogue. Cerulein induces an acute and edematous form of pancreatitis. We investigated whether inhibition of NADPH oxidase by diphenyleneiodonium suppresses the production of reactive oxygen species and apoptosis by determining viable cell numbers, DNA fragmentation, TUNEL staining, caspase-3 activity, and the expression of apoptosis-inducing factor in pancreatic acinar AR42J cells stimulated with cerulein. Inhibition on NADPH oxidase by diphenyleneiodonium was assessed by the alterations in NADPH oxidase activity and translocation of the cytosolic subunits p67phox and p47phox to the membrane. Intracellular Ca2+ level was monitored to investigate the relationship between NADPH oxidase and Ca2+ in cells stimulated with cerulein. As a result, cerulein induced the activation of NADPH, increased production of reactive oxygen species, and apoptotic indices determined by the expression of apoptosis-inducing factor, caspase-3 activation, TUNEL staining, DNA fragmentation, and cell viability. Treatment with DPI inhibited cerulein-induced activation of NADPH oxidase, the production of reactive oxygen species, and apoptosis, but not the increase of intracellular Ca2+ levels in pancreatic acinar cells. These results demonstrate that the cerulein-induced increase in intracellular Ca2+ level may be an upstream event of NADPH oxidase activation. Diphenyleneiodonium, an NADPH oxidase inhibitor, inhibits the expression of apoptosis-inducing factor and caspase-3 activation, and thus apoptosis in pancreatic acinar cells.  相似文献   

18.
目的:明确白细胞介素-6(IL-6)在小鼠急性胰腺炎中的作用及其机制研究。方法:通过胰胆管结扎的方法诱导小鼠急性胰腺炎;分离小鼠胰腺腺泡细胞。采用ELISA方法检测胰腺组织或腺泡细胞裂解物中的细胞因子;通过western blot分析检测组织或细胞中IL-6或ERK表达。结果:IL-6浓度在胰腺组织和腺泡细胞中显著增加(P0.05)。在离体原代小鼠腺泡细胞,TNF-α刺激增加IL-6释放(P0.05);与此同时,IL-6刺激可增加其它促炎性细胞因子的释放,两者都涉及ERK MAP激酶通路。黄酮类化合物木犀草素抑制IL-6刺激引起白细胞介素-6(IL-6)和人巨嗜细胞激活蛋白-1(CCL2/MCP-1)释放。最后进一步证实,IL-6激活人胰腺组织中的ERK。结论:IL-6在急性胰腺炎中增加,激活炎症通路并加重急性胰腺炎。  相似文献   

19.
BackgroundDuring pancreatitis, autophagy is activated, but lysosomal degradation of dysfunctional organelles including mitochondria is impaired, resulting in acinar cell death. Retrospective cohort analyses demonstrated an association between simvastatin use and decreased acute pancreatitis incidence.MethodsWe examined whether simvastatin can protect cell death induced by cerulein and the mechanisms involved during acute pancreatitis. Mice were pretreated with DMSO or simvastatin (20 mg/kg) for 24 h followed by 7 hourly cerulein injections and sacrificed 1 h after last injection to harvest blood and tissue for analysis.ResultsPancreatic histopathology revealed that simvastatin reduced necrotic cell death, inflammatory cell infiltration and edema. We found that cerulein triggered mitophagy with autophagosome formation in acinar cells. However, autophagosome-lysosome fusion was impaired due to altered levels of LAMP-1, AMPK and ULK-1, resulting in autophagosome accumulation (incomplete autophagy). Simvastatin abrogated these effects by upregulating LAMP-1 and activating AMPK which phosphorylated ULK-1, resulting in increased formation of functional autolysosomes. In contrast, autophagosomes accumulated in control group during pancreatitis. The effects of simvastatin to promote autophagic flux were inhibited by chloroquine. Mitochondria from simvastatin-treated mice were resistant to calcium overload compared to control, suggesting that simvastatin induced mitochondrial quality control to eliminate susceptible mitochondria. Clinical specimens showed a significant increase in cell-free mtDNA in plasma during pancreatitis compared to normal controls. Furthermore, genetic deletion of parkin abrogated the benefits of simvastatin.ConclusionOur findings reveal the novel role of simvastatin in enhancing autophagic flux to prevent pancreatic cell injury and pancreatitis.  相似文献   

20.
《Autophagy》2013,9(8):1060-1062
Auto-digestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. Although lysosomal hydrolases, such as cathepsin B, play a key role in intrapancreatic trypsinogen activation, it remains unclear where and how trypsinogen meets these lysosomal enzymes. Autophagy is an intracellular bulk degradation system in which cytoplasmic components are directed to the lysosome/vacuole by a membrane-mediated process. To analyze the role of autophagy in acute pancreatitis, we produced a conditional knockout mouse that lacks the autophagy-related (Atg) gene Atg5 in the pancreatic acinar cells. The severity of acute pancreatitis induced by cerulein is greatly reduced in these mice. In addition, Atg5-deficient acinar cells show a significantly decreased level of trypsinogen activation. These data suggest that autophagy exerts a detrimental effect in pancreatic acinar cells by activation of trypsinogen to trypsin. We propose a theory in which autophagy accelerates trypsinogen activation by lysosomal hydrolases under acidic conditions, thus triggering acute pancreatitis in its early stage.

Addendum to: Hashimoto D, Ohmuraya M, Hirota M, Yamamoto A, Suyama K, Ida S, Okumura Y, Takahashi E, Kido H, Araki K, Baba H, Mizushima N, Yamamura K. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J Cell Biol 2008; 181:1065-72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号