首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Acetylglucosaminidase (GlcNAc'ase), which possesses by far the highest activity of all Phallusia mammillata sperm glycosidases, was isolated and purified using DEAE-cellulose, phenyl-Sepharose, and concanavalin A affinity chromatography. The molecular size of the native enzyme estimated by G-200 gel permeation was 158 kDa. On SDS-PAGE, the denatured enzyme migrated as a single band with a Mr of 78 kDa. This indicates that under nondenaturing conditions the GlcNAc'ase prevails as a dimer. The molecular activity of the enzyme was determined to be 3.7 x 10(5) U/mumole, the Km for p-NP-GlcNAc was 0.65 mM, and the Ki for GlcNAc was 5.5 mM. It has been suggested that gamete binding in ascidians might be mediated by an enzyme-substrate complex established between a sperm glycosidase and corresponding glycosides on the vitelline coat. Thus, the GlcNAc'ase should be present as an exoenzyme at the proper place on the sperm surface membrane, i.e., on the sperm tip and possibly over the mitochondrial region. We localized the enzyme with fluorescence and electron microscopy using the neoglycoprotein BSA-p-aminophenyl-N-acetyl-beta-D-glucosaminide (BSA-GlcNAc) or concanavalin A coupled either to fluorochromes or gold particles. Labeling of unreacted and activated sperm revealed three distinct binding sites, namely at the sperm tip, over the mitochondrion, and at the head-tail junction. In reacted sperm strong labeling was observed over the translocated mitochondrion as well as at the sperm tip. An intensive binding was observed along the rim which borders the cap-like structure at the sperm tip. The distribution of the enzyme reflected by these binding patterns accounts well for the suggested function. Using N-acetylglucosaminono-1,5-lactone oxime, a novel, highly specific inhibitor of GlcNAc'ase, we were able to show that this enzyme is indispensable for fertilization of intact eggs, but not of eggs deprived of their vitelline coat. These observations are discussed in terms of functional relationships which may exist between this enzyme, sperm binding, gamete recognition, and penetration of the vitelline coat.  相似文献   

2.
During activation of amphibian eggs, cortical granule exocytosis causes elaborate ultrastructural changes in the vitelline envelope. These changes involve modifications in the structure of the vitelline envelope and formation of a fertilization envelope (FE) that can no longer be penetrated by sperm. In Bufo arenarum, as the egg traverses the oviduct, the vitelline envelope is altered by a trypsin-like protease secreted by the oviduct, which induces an increased susceptibility of the vitelline envelope to sperm lysins. Full-grown oocytes of B. arenarum, matured in vitro by progesterone, are polyspermic, although cortical granule exocytosis seems to occur within a normal chronological sequence. These oocytes can be fertilized with or without trypsin treatment, suggesting that the vitelline envelope is totally sperm-permeable. Vitelline envelopes without trypsin treatment cannot retain either gp90 or gp96. This suggests that these glycoproteins are involved in the block to polyspermy and that trypsin treatment of matured in vitro oocytes before insemination is necessary to enable vitelline envelopes to block polyspermy. The loss of the binding capacity in vitelline envelopes isolated from B. arenarum oocytes matured in vitro with trypsin treatment and activated by electric shock suggests that previous trypsin treatment is a necessary step for sperm block to occur. When in vitro matured oocytes were incubated with the product of cortical granules obtained from in vitro matured oocytes (vCGP), vitelline envelopes with trypsin treatment were able to block sperm entry. These oocytes exhibited the characteristic signs of activation. These results support the idea that B. arenarum oocytes can be activated by external stimuli and suggest the presence of unknown oocyte surface receptors linked to the activation machinery in response to fertilization. Electrophoretic profiles obtained by SDS-PAGE of solubilized vitelline envelopes from oocytes matured in vitro revealed the conversion of gp40 (in vitro matured oocytes, without trypsin treatment) to gp38 (ascribable to trypsin activity or cortical granule product activity, CGP) and the conversion of gp70 to gp68 (ascribable to trypsin activity plus CGP activity). Taking into account that only the vitelline envelopes of in vitro matured oocytes with trypsin treatment and activated can block sperm entry, we may suggest that the conversion of gp70 to gp68 is related to the changes associated with sperm binding.  相似文献   

3.
Spermatozoa should bind to and then penetrate the vitelline coat for fertilization in ascidians and many other animals. There is substantial evidence that the binding of ascidian sperm is mediated by a sperm glycosidase and complementary saccharide chains of glycoproteins in the vitelline coat. Involvement of a sperm proteasome in the binding is also suggested. For the penetration, sperm proteases such as chymotrypsin-like enzyme, acrosin, spermosin and proteasome are suggested to play essential roles. Sperm glycosidase, that is translocated from the tip of sperm head to the surface overlying the mitochondrion, anchors the mitochondrion at the outer surface of vitelline coat. Therefore it assists sperm to penetrate the vitelline coat and traverse the perivitelline space. For fusion with egg plasma membrane, sperm metalloendoprotease seems to be involved. Egg glycosidases and proteases serve for some steps after fertilization, such as the prevention of polyspermy, expansion of perivitelline space and regulation of cell cycle.  相似文献   

4.
Eggs of Ascidia ceratodes and Phallusia mammillata block polyspermy by releasing a phosphatidylinositol‐linked glycosidase from the follicle cell and egg surface that binds to and blocks all unoccupied sperm binding sites on the vitelline coat. Release of this glycosidase is thought to be under the control of a membrane‐bound phospholipase. To elucidate the mechanism of phospholipase activation, intact eggs and isolated follicle cells are activated by either sperm or the tyrosine kinase activator 9,10‐dimethyl‐1,2‐benzanthracene (DMBA). Both treatments caused release of comparable quantities of glycosidase activity, the earliest event following fertilization. A corresponding increase in phospholipase activity accompanied this glycosidase release. The tyrosine kinase inhibitor genistein blocked release by DMBA at concentrations as low as 1 μM, but had no effect on sperm‐induced release even when used up to 100 μM. Tyrphostin A23, another tyrosine kinase inhibitor, when used at 200 μM blocked glycosidase release and decreased phospholipase activity following both DMBA activation and fertilization. Western blot analysis probing for phosphotyrosine content of disrupted intact eggs with their follicle cells revealed the absence of a band in tyrphostin‐treated eggs corresponding to a 40 kDa protein that was present in both unfertilized and fertilized egg samples. Based on these results, we propose that phosphorylation of specific tyrosine residues is necessary for phospholipase activation and is sufficient to trigger subsequent glycosidase release. Mol. Reprod. Dev. 54:69–75, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Sperm bind to vitelline coat (VC) glycosides of ascidian eggs by means of a sperm surface glycosidase (Hoshi et al.: Zool Sci 2:65, 1985). In the genus Ascidia, N-acetylglucosamine (NAG) is the VC ligand. After initial binding by the tip of the head, sperm pass through the VC and perivitelline space leaving the single mitochondrion outside. This process can also be followed in vitro on a coverslip. Analysis of recorded video images shows that the sperm moves away from the anchored mitochondrion. Our model for sperm penetration suggests that mitochondrial translocation is responsible for driving the sperm into the egg. In the work presented here, we have demonstrated that ascidian sperm have N-acetyl-beta-D-glucosaminidase (NAGase) activity with an acidic pH optimum. This enzyme, which can be removed from the sperm with Triton X-100, binds to concanavalin A, demonstrating that it is glycosylated. Histochemical methods disclose that the enzyme is originally located at the tip of the head but subsequently remains with the surface overlying the mitochondrion during translocation. Fluorescent Con A was used as a second label for localization of the enzyme on the cell surface during translocation. Colocalization of both probes of the enzyme support a crucial facet of our model; the sperm surface VC binding site remains over the mitochondrion during translocation. This would couple mitochondrial translocation with sperm penetration and drive the sperm into the egg.  相似文献   

6.
The ubiquitin-proteasome system is essential for intracellular protein degradation, but there are few studies of this system in the extracellular milieu. Recently, we reported that a 70-kDa sperm receptor, HrVC70, on the vitelline coat is ubiquitinated and then degraded by the sperm proteasome during fertilization of the ascidian, Halocynthia roretzi. Here, we investigated the mechanism of extracellular ubiquitination. The HrVC70-ubiquitinating enzyme activity was found to be released from the activated sperm during the fertilization process. This enzyme was purified from an activated sperm exudate, by chromatography on DEAE-cellulose and ubiquitin-agarose columns, and by glycerol density gradient centrifugation. The molecular mass of the enzyme was estimated to be 700 kDa. The purified enzyme requires CaCl2 and MgATP for activity, and is active in seawater. The purified enzyme preparation, but not the crude enzyme preparation, showed narrow substrate specificity to HrVC70. Moreover, ATP and ubiquitin are released from the activated sperm to the surrounding seawater during fertilization. These results indicate that ascidian sperm release a novel extracellular ubiquitinating enzyme system together with ATP and ubiquitin during penetration of the vitelline coat of the egg, which catalyzes the ubiquitination of the HrVC70, an essential component of ascidian fertilization.  相似文献   

7.
Increasing evidence has evolved from studies in ascidians and mammals that sperm β- N -acetylglucosaminidase (GlcNAc'ase) plays a crucial role in fertilization. In the ascidian Phallusia mammillata , GlcNAc'ase is the predominant sperm-bound glycosidase and N-acetylglucosamine (GlcNAc) is the prevailing glycoside residue on the vitelline coat. We report here that the GlcNAc'ase inhibitor O -(2-acetamido-2-deoxy-D-glucopyrano-sylidene)-amino- N -phenylcarbamate (PUGNAC) is a potent competitive inhibitor of sperm-bound GlcNAc'ase in P. mammillata . The inhibitor constant Ki for the isolated enzyme is 47 nmol/L. Fertilization of eggs is inhibited by PUGNAC in a dose dependent competitive manner with 50% inhibition at an inhibitor concentration of 85 μmol/L. Further experiments, in which intact eggs possessing an egg coat were mixed with eggs from which the coat had been removed, showed that only fertilization of intact eggs was inhibited by PUGNAC. This finding suggests that PUGNAC prevents the binding of the sperm-associated GlcNAc'ase to terminal GlcNAc residues on the vitelline coat, thus inhibiting sperm binding and subsequently fertilization. Furthermore and most importantly, it shows that treatment with PUGNAC does not affect the viability of sperm and that the process of sperm-egg fusion is not affected.  相似文献   

8.
The roles of sperm proteasomes in fertilization were investigated in the sea urchin Pseudocentrotus depressus. Two proteasome inhibitors, MG-132 and MG-115, inhibited fertilization at 100 microM, whereas chymostatin and leupeptin showed no inhibition. Among three proteasome substrates, Z-Leu-Leu-Glu-MCA showed the strongest inhibition toward fertilization. MG-132 inhibited the egg-jelly-induced, but not ionomycin-induced, acrosome reaction. In addition, MG-132, but not E-64-d, inhibited fertilization of dejellied eggs by acrosome-reacted sperm. MG-132 showed no significant inhibition toward the binding of reacted sperm to the vitelline layer. Proteasomes were detected by Western blotting in the acrosomal contents, which are partially released upon exocytosis. We also found that the inhibition pattern of the caspase-like activity of the proteasome in the acrosomal contents by chymostatin and proteasome inhibitors coincided well with their inhibitory abilities toward fertilization. Furthermore, the vitelline layer of unfertilized eggs appears to be ubiquitinated as revealed by immunocytochemistry and Western blotting. Extracellular ATP, required for the degradation of ubiquitinated proteins by the proteasome, was also necessary for fertilization. These results indicate that the sperm proteasome plays a key role not only in the acrosome reaction but also in sperm penetration through the vitelline envelope, most probably as a lysin, during sea urchin fertilization.  相似文献   

9.
A factor which dissolves the vitelline layer was extracted from sperm of the sea urchin, Hemicentrotus pulcherrimus. Turbidity of the suspension was reduced when isolated vitelline layers were mixed with this sperm factor. When the mixture was subjected to SDS polyacrylamide gel electrophoresis, some of the protein bands of the vitelline layer were seen to be missing. The lytic activity of the factor was heat labile, completely inhibited by L-1-tosyl-amide-2-phenyl-ethylchloromethyl ketone and partially inhibited by soybean trypsin inhibitor. Chymotrypsin activity was detected, but not trypsin, arylsulfatase, or glycosidase. These results suggest that a chymotrypsin-like enzyme participates in lysis of the vitelline layer by the fertilizing spermatozoon.  相似文献   

10.
In this report, unpublished and recent findings concerning the structure and function of the ascidian egg coat are compiled in context with fertilization. In the initial stage of ascidian fertilization, sperm interact with a complex egg investment that consists of a layer of follicle cells attached to an acellular vitelline coat. Increasing evidence exists that ascidian sperm are activated at their encounter with the follicle cells. The molecular basis of sperm-follicle cell interactions is discussed in context with sperm binding, membrane proteins and sperm bound glycosidase. The model that suggests a block to polyspermy established by glycosidase released from the follicle cells on fertilization is evaluated and compared with assured facts. Although a number of questions remain to be answered, our recent findings that a cloned beta-hexosaminidase from P. mammillata binds exclusively to the follicle cells of unfertilized but not fertilized eggs, indicates that the follicle cells participate in the block to polyspermy. A dual function, mediating sperm activation and a block to polyspermy attributes to the ascidian follicle cells a key position in fertilization.  相似文献   

11.
In the initial stage of ascidian fertilization sequential sperm–egg coat interactions assure successful species-specific fertilization. Sperm recognize, bind to, and then penetrate the egg investment that consists of follicle cells (FC) and an acellular vitelline coat (VC). To identify plasma proteins that recognize the egg coat, a membrane fraction was prepared from Phallusia mammillata sperm using nitrogen cavitation followed by three centrifugation steps. The purity of the membrane fractions was assessed by transmission electron microscopy and marker enzymes. Comparison of the electrophoretic pattern of sperm extracellular membrane domains labeled by radio-iodination or biotinylation and recorded by autoradiography or enhanced chemiluminescence, respectively, showed the non-radioactive procedure to be a convenient and efficient method. Isolated sperm membrane components were found to inhibit fertilization in a concentration-dependent manner and to bind mainly to the FC. Eggs were used as an affinity matrix to determine which of the solubilized sperm membrane proteins possess egg-binding activity. Three biotinylated proteins (66kDa, 120kDa and 140kDa) were found to bind to the VC. Assays probing heterospecific binding to Ascidia mentula eggs revealed that the 120kDa protein possesses species-specific binding activity. Thus, the current data suggest the 120 kDa sperm membrane protein as a candidate adhesion molecule with a possible role in gamete binding and species-specific recognition in P. mammillata .  相似文献   

12.
Previous electron microscopic observations have shown that the acrosome of the sperm of the frog, Xenopus laevis, comprises a membrane-bounded vesicle covering the anterior-most position of the head. We obtained a sperm suspension from the testes and stained it with LysoSensor Green for observation under a confocal laser scanning microscope and found a bright fluorescence reflecting the presence of the acrosomes at the top of the sperm head in about 64% of the sperm, with no deterioration of their capacity to fertilize. About 40% of the sperm with an acrosome underwent an acrosome reaction in response to Ca(2+) ionophore A23187, as evidenced by a loss of LysoSensor Green stainability, accompanied by breakdown of the acrosomal vesicle. About 53% of the sperm bound to isolated vitelline envelopes underwent an acrosome reaction, whereas both jelly water and solubilized vitelline envelopes weakly induced an acrosome reaction. When the sperm were treated with an oviductal extract obtained from the pars recta, but not the pars convoluta region, about 40% of the sperm with acrosomes underwent an acrosome reaction. The substance containing acrosome reaction-inducing activity in the pars recta extract seemed to be a heat-unstable substance with a molecular weight of greater than 10 kDa. The activity was not inhibited by protease inhibitors but required extracellular Ca(2+) ions. These results indicate that the acrosome reaction occurs on the vitelline envelopes in response to the substance deposited from the pars recta during the passage of the oocytes through the oviduct.  相似文献   

13.
Sperm proteasomes are thought to be involved in sperm binding to and in sperm penetration through the vitelline coat of the eggs of the stolidobranch ascidian Halocynthia roretzi. However, it is not known whether they are involved in the fertilization of eggs of other ascidians. Therefore, we investigated whether sperm proteasomes are also involved in the fertilization of the eggs of the primitive phlebobranch ascidian Ciona intestinalis. Fertilization of the eggs of C. intestinalis was potently inhibited by the proteasome inhibitors MG115 and MG132 but not by the cysteine protease inhibitor E-64-d. On the other hand, neither fertilization of the vitelline coat-free eggs nor sperm binding to the vitelline coat was inhibited by the two proteasome inhibitors at a concentration sufficient to inhibit fertilization of intact eggs. These results indicate that the proteasome plays an essential role in sperm penetration through the vitelline coat rather than in sperm binding to the coat or in sperm-egg membrane fusion. The proteasome activity, which was detected in the sperm extract using Suc-Leu-Leu-Val-Tyr-MCA as a substrate, was strongly inhibited by both MG115 and MG132, and was weakly inhibited by chymostatin, whereas neither leupeptin nor E-64-d inhibited the activity. The molecular mass of the enzyme was estimated to be 600-kDa by Superose 12 gel filtration, and the activity in sperm extract was immunoprecipitated with an anti-proteasome antibody. These results indicate that the proteasome present in sperm of C. intestinalis is involved in fertilization, especially in the process of sperm penetration through the vitelline coat, probably functioning as a lysin. Mol. Reprod. Dev. 50:493–498, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Heat shock proteins A (HSPAs, previously known as HSP70s) are widely distributed proteins originally linked with heat shock but now associated with several normal cellular functions. We recently found indirect evidence suggesting a role for HSPAs in sperm-oocyte interaction in the amphibian Bufo arenarum. In the present study our aim was to study its expression, subcellular distribution, and role during fertilization. By Western blot analysis using two different antibodies we detected HSPAs present in B. arenarum oocytes in the absence of any stress. We performed two-dimensional electrophoresis and detected two isoforms with isoelectric points of 5.25 and 5.45. We studied its subcellular distribution isolating total membranes, cytosol, and plasma membranes. HSPAs were present in all of these fractions. We confirmed these results by immunofluorescence microscopy and also found that the HSPA signal was present in the vitelline envelope. To further test this, we performed Western blot analysis in isolated vitelline envelopes and in egg water (diffusible material from deposited oocytes). HSPAs were present in these two fractions. Moreover, human recombinant his-tagged HSPA (HSPA1A) was able to specifically bind to sperm in vitro (midpiece) and enhance sperm membrane integrity. In vitro fertilization assays in the presence of anti-HSPA polyclonal antibodies showed diminished fertilization scores at low sperm concentrations (10(5) cells per milliliter). Our results suggest that HSPAs are present in intracellular and extracellular structures of nonstressed B. arenarum oocytes and participates in fertilization by and that their release during spawning plays a role in sperm membrane integrity.  相似文献   

15.
Summary The ability of the vitelline and fertilization envelopes of rainbow trout eggs to trap toxins was investigated using cholera enterotoxin B and staphylococcal enterotoxin B in cytochemical or immunocytochemical experiments. Extracts from both envelopes were investigated by immunoblot analysis to identify toxin-binding proteins after SDS-PAGE. Binding studies of cholera enterotoxin B to vitelline envelopes and fertilization envelopes revealed a greater reactive intensity in the former. Treatment with neuraminidase enhanced the reactive intensity (or deposit) in the vitelline envelope and fertilization envelope outermost layers, with more conspicuous reactivity in the former. Cytochemical experiments showed that exogenous ganglioside GM1 considerably enhanced cholera enterotoxin B binding to vitelline and fertilization envelopes. This enhancement was shown by an intense reactivity following the occurrence of new binding sites on the vitelline envelope inner surface and the inner wall of the zona radiata, a simultaneous extreme reduction in the reactivity of the vitelline envelope outermost layer, and a striking increase in reactive products in the fertilization envelope outermost layer. The surface region of the vitelline or fertilization envelope outermost layer was the binding site for staphylococcal enterotoxin B, and neuraminidase treatment caused a considerable reduction of reactive products in these areas. Immunoblot analysis of cholera enterotoxin Bor staphylococcal enterotoxin B-binding substances in extracts from the vitelline envelopes or fertilization envelopes demonstrated that the great majority of the binding substances are glycoproteins. The present results suggest that glycoproteins constituting the vitelline envelope or fertilization envelope may contribute to the protection of the egg itself or the embryo by trapping noxious toxins.  相似文献   

16.
Ascidian sperm lysin system   总被引:1,自引:0,他引:1  
Fertilization is a precisely controlled process involving many gamete molecules in sperm binding to and penetration through the extracellular matrix of the egg. After sperm bind to the extracellular matrix (vitelline coat), they undergo the acrosome reaction which exposes and partially releases a lytic agent called "lysin" to digest the vitelline coat for the sperm penetration. The vitelline coat sperm lysin is generally a protease in deuterostomes. The molecular mechanism of the actual degradation of the vitelline coat, however, remains poorly understood. In order to understand the lysin system, we have been studying the fertilization mechanism in ascidians (Urochordata) because we can obtain large quantities of gametes which are readily fertilized in the laboratory. Whereas ascidians are hermaphrodites, which release sperm and eggs simultaneously, many ascidians, including Halocynthia roretzi, are strictly self-sterile. Therefore, after sperm recognize the vitelline coat as nonself, the sperm lysin system is thought to be activated. We revealed that two sperm trypsin-like proteases, acrosin and spermosin, the latter of which is a novel sperm protease with thrombin-like substrate specificity, are essential for fertilization in H. roretzi. These molecules contain motifs involved in binding to the vitelline coat. We found that the proteasome rather than trypsin-like proteases has a direct lytic activity toward the vitelline coat. The target for the ascidian lysin was found to be a 70-kDa vitelline coat component called HrVC70, which is made up of 12 EGF-like repeats. In addition to the proteasome system, the ubiquitination system toward the HrVC70 was found to be necessary for ascidian fertilization. In this review, I describe recent progress on the structures and roles in fertilization of the two trypsin-like proteases, acrosin and spermosin, and also on the novel extracellular ubiquitin-proteasome system, which plays an essential role in the degradation of the ascidian vitelline coat.  相似文献   

17.
Ascidians (invertebrate chordates) are very abundant in many marine subtidal areas. They often live in dense multispecies clumps; thus, interspecific competition for space may be intense. Although most noncolonial species are broadcast spawners, their eggs can be fertilized only by sperm of the same species (1). Multiple fertilization is lethal and all animals have evolved blocks to polyspermy. Ascidian eggs block polyspermy by enzymatic (2) and electrical mechanisms (3). Sperm bind to N-acetylglucosamine groups on the vitelline coat (4, 5, 6, 7). Follice cells surrounding the vitelline coat release N-acetylglucosaminidase during egg activation (8), preventing the binding of all sperm but a few (2). I show here that this interaction is not species-specific; sperm from one species can cause glycosidase release from follicle cells of a second species. Furthermore, once glycosidase release has been induced, the subsequent addition of sperm from the egg-producing species fails to fertilize a substantial proportion of these eggs. This leads to the hypothesis that sperm from one species of ascidian can interfere with fertilization of a second species. While intraspecific sperm competition has been well documented in several taxa (9, 10), this is the first record of sperm competition between species, or interspecific sperm competition.  相似文献   

18.
Sperm-oocyte plasma membrane interaction is an essential step in fertilization. In amphibians, the molecules involved have not been identified. Our aim was to detect and characterize oocyte molecules with binding affinity for sperm. We isolated plasma membranes free from vitelline envelope and yolk proteins from surface-biotinylated Bufo arenarum oocytes. Using binding assays we detected a biotinylated 100 kDa plasma membrane protein that consistently bound to sperm. Chromatographic studies confirmed the 100 kDa protein and detected two additional oocyte molecules of 30 and 70 kDa with affinity for sperm. Competition studies with an integrin-interacting peptide and cross-reaction with an anti-HSP70 antibody suggested that the 100 and 70 kDa proteins are members of the integrin family and HSP70, respectively. MS/MS analysis suggested extra candidates for a role in this step of fertilization. In conclusion, we provide evidence for the involvement of several proteins, including integrins and HSP70, in B. arenarum sperm-oocyte plasma membrane interactions.  相似文献   

19.
It has been recently shown that, in several genera of annelids, including Chaetopterus, fertilizing sperm attach to and fuse with egg microvilli which penetrate the vitelline envelope. This suggests that the annelid vitelline envelope may have no direct or obligatory role in normal fertilization. The present study was undertaken to investigate the involvement of the vitelline envelope in fertilization in Chaetopterus experimentally, by examining the fertilization of vitelline envelope-free eggs quantitatively and qualitatively. Brief exposure of the eggs to isotonic sucrose-EDTA removed the vitelline envelope as determined by both phase-contrast and electron microscopy, rendered the eggs more sensitive to polyspermy and substantially reduced the binding of supernumerary sperm to eggs but did not decrease fertilizability as determined by sperm dilution assay and did not make the eggs more sensitive to cross-fertilization. The events of fertilization were examined by electron microscopy and found to be very similar in vitelline envelope-free eggs to those in intact eggs. We conclude that the vitelline envelope in Chaetopterus has binding sites for sperm but that it has no obligatory role in fertilization and is primarily involved in the prevention of polyspermy.  相似文献   

20.
Vitelline envelopes are composed of glycoproteins that participate in sperm-egg interactions during the initial stages of fertilization. In Xenopus laevis, the vitelline envelope is composed of at least 4 glycoproteins (ZPA, ZPB, ZPC, and ZPX). A sperm binding assay involving the covalent coupling of envelope glycoproteins to silanized glass slides was developed. In our assay, sperm bound to the egg envelopes derived from oviposited eggs but not activated eggs. The majority of the egg envelope ligand activity for sperm binding was derived from the complex N-linked oligosaccharides of ZPC. This sperm binding involved N-acetylglucosamine and fucose residues, as binding was abolished after treatment with cortical granule beta-N-acetylglucosaminidase and commercial beta-N-acetylglucosaminidases and was reduced by 44% after treatment with alpha-fucosidase. Although both the envelope glycoproteins ZPA and ZPC possessed independent ligand activity, ZPC was the major ligand for sperm binding (75%). Mixing of isolated ZPA, ZPB, and ZPC in a ratio of 1:4:4 (equal to that in the egg envelope) resulted in sperm binding that was greater than that of the sum of the separate components. The egg glycoproteins acted in synergy to increase sperm binding. Thus, ZPC possessed both independent and hetero-oligomeric-dependent ligand activities for sperm binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号