首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cyanobacterium Synechocystis PCC6803 was chosen as a target organism for construction of a suitable photosynthetic host to enable selection of variant plant-like ribulose bisphosphate carboxylase/oxygenase (Rubisco) enzymes. The DNA region containing the operon encoding Rubisco (rbc) was cloned, sequenced and used for the construction of a transformation vector bearing flanking sequences to the rbc genes. This vector was utilized for the construction of a cyanobacterial rbc null mutant in which the entire sequence comprising both rbc genes, was replaced by the Rhodospirillum rubrum rbcL gene linked to a chloramphenicol resistance gene. Chloramphenicol-resistant colonies, Syn6803rbc, were detected within 8 days when grown under 5% CO2 in air. These transformants were unable to grow in air (0.03% CO2). Analysis of their genome and Rubisco protein confirmed the site of the mutation at the rbc locus, and indicated that the mutation had segregated throughout all of the chromosome copies, consequently producing only the bacterial type of the enzyme. In addition, no carboxysome structures could be detected in the new mutant. Successful restoration of the wild-type rbc locus, using vectors bearing the rbc operon flanked by additional sequences at both termini, could only be achieved upon incubating the transformed cells under 5% CO2 in air prior to their transferring to air. The yield of restored transformants was proportionally related to the length of those sequences flanking the rbc operon which participate in the homologous recombination. The Syn6803rbc mutant is amenable for the introduction of in vitro mutagenized rbc genes into the rbc locus, aiming at the genetic modification of the hexadecameric type Rubisco.Abbreviations Cmr chloramphenicol resistance - Kmr kanamycin resistance - HCR high CO2 requirer - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - SSC sodium chloride and sodium citrate - wt wild-type  相似文献   

4.
5.
Partial nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rubisco) gene (1333 base pairs: about 90% of the gene) from several seed plants were determined. Phylogenetic trees based on amino acid sequences were inferred by using the neighbor joining and maximum likelihood methods. The results indicate (1) monophyly of gnetum group (Ephedra, Gnetum, Welwitschia), (2) monophyly of extant gymnosperms containing gnetum group, which contradicts the results of morphological data.  相似文献   

6.
The effects of hypoxia caused by complete submerging of Mnium undulatum gametophores in water, on their photosynthetic activity and the activity of two antioxidative enzymes: superoxide dismutase (SOD) and catalase (CAT) were investigated. The net photosynthesis was strongly inhibited throughout the experiment, and the strong drop in the maximum quantum yield of the PSII (Fv/Fm) was also observed. Three classes of SOD: MnSOD, FeSOD, Cu/ZnSOD and three isoforms of Cu/ZnSOD were identified. A significant decrease in activity of MnSOD, FeSOD and one Cu/ZnSOD isoform was observed after 24 and 48 h of hypoxia. FeSOD activity decreased already after 1 h of submerging in water and its activity remained at the low level during whole period of the experiment. CAT activity was also strongly inhibited in response to hypoxia stress. The obtained results suggest relationships between photosynthetic activity and antioxidative system in M. undulatum gametophores under oxygen deficiency stress.  相似文献   

7.
为探索苦楝应对盐胁迫的响应机制,该文以1年生苦楝(Melia azedarach)实生苗为材料,在盆栽条件下设置中性盐Na_2SO_4和碱性盐Na_2CO_33个盐浓度(200、400、600 mmol·L~(-1))处理40 d,研究苦楝的抗盐碱水平及在不同程度盐碱胁迫条件下的生长及光合生理变化。结果表明:随着盐浓度的提高,苦楝的苗高、地径和生物量的增长量均呈现下降趋势,且碱性盐胁迫条件下降程度更大,盐胁迫提高苦楝的根冠比。处理10 d时,苦楝幼苗的所有光合指标随中性盐和碱性盐浓度的提高呈相似的下降特征,碱性盐胁迫条件下的降低幅度显著大于中性盐胁迫,且随处理时间的增加,中性盐和碱性盐处理下苦楝幼苗的净光合速率和蒸腾速率显著降低。随着盐浓度的提高,苦楝的叶绿素含量呈现下降趋势,200 mmol·L~(-1)盐胁迫对叶绿素含量影响较小,400、600 mmol·L~(-1)盐胁迫均对叶绿素含量有显著影响。600 mmol·L~(-1)碱性盐胁迫条件下,苦楝叶片相对电导率和饱和水分亏缺最高,显著高于其余处理。同等浓度下,碱性盐胁迫的苦楝叶片相对电导率和饱和水分亏缺显著高于中性盐胁迫处理。综上结果认为,苦楝具有一定的耐盐碱能力,碱性盐比中性盐对苦楝幼苗的影响更大。  相似文献   

8.
Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments. Programmed cell death or apoptosis is a physiological mechanism of cell death, that probably evolved with multicellularity, and is indispensable for normal growth and development.Dictyostelium discoideum, an eukaryotic developmental model, shows both unicellular and multicellular forms in its life cycle and exhibits apparent caspase-independent programmed cell death, and also shows high resistance to oxidative stress. An attempt has been made to investigate the biochemical basis for high resistance ofD. discoideum cell death induced by different oxidants. Dose-dependent induction of cell death by exogenous addition of hydrogen peroxide (H2O2),in situ generation of H2O2 by hydroxylamine, and nitric oxide (NO) generation by sodium nitroprusside treatment inD. discoideum were studied. The AD50 doses (concentration of the oxidants cusing 50% of the cells to die) after 24 h of treatment were found to be 0.45 mM, 4 mM and 1 mM, respectively. Studies on enzymatic antioxidant status ofD. discoideum when subjected to oxidative stress, NO and nutrient stress reveal that superoxide dismutase and catalase were unchanged; a significant induction of glutathione peroxidase was observed. Interestingly, oxidative stress-induced lipid membrane peroxidative damage could not be detected. The results shed light on the biochemical basis for the observed high resistance to oxidative stress inD. discoideum.  相似文献   

9.
Physiological basis for the cultivation of the Gelidiaceae   总被引:2,自引:2,他引:0  
An understanding of the physiological factors important to growth and agar production of the Gelidiales would be useful for successful mariculture of these commercially valuable plants. Several environmental factors, including light, nitrogen, carbon, temperature and water motion, have been shown to have potential significance for growth rates, reproduction and carbon partitioning in defining optimal conditions for cultivation. Limiting and optimal growth conditions, where known, are presented, and evaluation of data reported in the literature is addressed.  相似文献   

10.
Summary The study of phenolic content and activities of peroxidase and polyphenoloxidase in relation to the degree of downy mildew infection of 12 pearl millet cultivars revealed that these were linearly related to the degree of resistance at both the 30 and 50 day growth stages. Useful electrophoretic differences in peroxidase and polyphenoloxidase were also observed with respect to the expression of resistance.  相似文献   

11.
Optimal acclimation of the C3 photosynthetic system under enhanced CO2   总被引:1,自引:0,他引:1  
A range of studies of C3 plants have shown that there is a change in both the carbon flux and the pattern of nitrogen allocation when plants are grown under enhanced CO2. This paper examines evidence that allocation of nitrogen both to and within the photosynthetic system is optimised with respect to the carbon flux. A model is developed which predicts the optimal relative allocation of nitrogen to key enzymes of the photosynthetic system as a function of CO2 concentration. It is shown that evidence from flux control analysis is broadly consistent with this model, although at high nitrogen and under certain conditions at low nitrogen experimental data are not consistent with the model. Acclimation to enhanced CO2 is also assessed in terms of resource allocation between photosynthate sources and sinks. A means of assessing the optimisation of this source-sink allocation is proposed, and several studies are examined within this framework. It is concluded that C3 plants probably possess the genetic feedback mechanisms required to efficiently smooth out any imbalance within the photosynthetic system caused by a rise in atmospheric CO2.Abbreviations A net rate of CO2 assimilation - c i intercellular CO2 concentration - CR A flux control coefficient for Rubisco with respect to flux A - FBPase fructose 1,6-bisphosphatase - kapp apparent catalytic rate constant - PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetically active photon flux density - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Ru5P ribulose 5-phosphate - SBPase sedoheptulose 1,7-bisphosphatase  相似文献   

12.
Acclimation of photosynthetic proteins to rising atmospheric CO2   总被引:9,自引:0,他引:9  
In this review we discuss how the photosynthetic apparatus, particularly Rubisco, acclimates to rising atmospheric CO2 concentrations (ca). Elevated ca alters the control exerted by different enzymes of the Calvin cycle on the overall rate of photosynthetic CO2 assimilation, so altering the requirement for different functional proteins. A decreased flux of carbon through the photorespiratory pathway will decrease requirements for these enzymes. From modeling of the response of CO2 uptake (A) to intracellular CO2 concentration (ci) it is shown that the requirement for Rubisco is decreased at elevated ca, whilst that for proteins limiting ribulose 1,5 bisphosphate regeneration may be increased. This balance may be altered by other interactions, in particular plasticity of sinks for photoassimilate and nitrogen supply; hypotheses on these interactions are presented. It is speculated that increased accumulation of carbohydrate in leaves developed at elevated ca may signal the down regulation of Rubisco. The molecular basis of this down regulation is discussed in terms of the repression of photosynthetic gene expression by the elevated carbohydrate concentrations. This molecular model is then used to predict patterns of acclimation of perennials to long term growth in elevated ca.  相似文献   

13.
The effects of elevated concentrations of atmospheric carbon dioxide and ozone on diurnal patterns of photosynthesis have been investigated in field-grown spring wheat ( Triticum aestivum ). Plants cultivated under realistic agronomic conditions, in open-top chambers, were exposed from emergence to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at ambient (380 μmol mol−1, seasonal mean) or elevated (692 μmol mol−1) levels, [O3] at ambient (27 nmol mol−1, 7 hr seasonal mean) or elevated (61 nmol mol−1) levels. After anthesis, diurnal measurements were made of flag-leaf gas-exchange and in vitro Rubisco activity and content. Elevated [CO2] resulted in an increase in photoassimilation rate and a loss of excess Rubisco activity. Elevated [O3] caused a loss of Rubisco and a decline in photoassimilation rate late in flag-leaf development. Elevated [CO2] ameliorated O3 damage. The mechanisms of amelioration included a protective stomatal restriction of O3 flux to the mesophyll, and a compensatory effect of increased substrate on photoassimilation and photosynthetic control. However, the degree of protection and compensation appeared to be affected by the natural seasonal and diurnal variations in light, temperature and water status.  相似文献   

14.
短暂低温对佛手光合生理的影响   总被引:3,自引:0,他引:3  
佛手(Citrus medica var. sarcodactylis Swingle)是一种对冷胁迫较为敏感的观果植物,在生产中普遍存在着冷害影响植物生长的现象.通过模拟浙中地区冬季设施种植中常见的短暂低温弱光条件,研究了佛手叶片的光合生理变化.研究表明,15℃低温即显著降低佛手光合速率、气孔导度,显著提高胞间CO2浓度;引起Fv/Fm显著性下降及初始荧光Fo显著上升的拐点温度为10℃,但延长处理时间至72h情况下,15℃亦显著降低Fv/Fm;低温处理还降低佛手光合羧化效率、最大光合速率,并导致光抑制现象发生时对应光强降低;低温条件下佛手叶片质膜透性及MDA含量高于对照,SOD、POD、CAT等抗氧化酶的活性则呈下降趋势;由此可见,短暂低温弱光胁迫首先是降低核酮糖1, 5-二磷酸羧化酶(Rubisco)等碳固定关键酶活性,引起氧自由基积聚,进而引发光抑制及光合速率的下降.  相似文献   

15.
Abstract. In the first part of this review, I discuss how we can predict the direct short-term effect of enhanced CO2 on photosynthetic rate in C3 terrestrial plants. To do this, I consider: (1) to what extent enhanced CO2 will stimulate or relieve demand on partial processes like carboxylation, light harvesting and electron transport, the Calvin cycle, and end-product synthesis; and (2) the extent to which these various processes actually control the rate of photosynthesis. I conclude that control is usually shared between Rubisco (which responds sensitively to CO2) and other components (which respond less sensitively), and that photosynthesis will be stimulated by 25–75% when the CO2 concentration is doubled from 35 to 70 Pa. This is in good agreement with the published responses. In the next part of the review, I discuss the evidence that most plants undergo a gradual inhibition of photosynthesis during acclimation to enhanced CO2. I argue that this is related to an inadequate demand for carbohydrate in the remainder of the plant. Differences in the long-term response to CO2 may be explained by differences in the sink-source status of plants, depending upon the species, the developmental stage, and the developmental conditions. In the third part of the review, I consider the biochemical mechanisms which are involved in ‘sink’ regulation of photosynthesis. Accumulating carbohydrate could lead to a direct inhibition of photosynthesis, involving mechanical damage by large starch grains or Pi-limitation due to inhibition of sucrose synthesis. I argue that Pi is important in the short-term regulation of partitioning to sucrose and starch, but that its contribution to ‘sink’ regulation has not yet been conclusively demonstrated. Indirect or ‘adaptive’ regulation of photosynthesis is probably more important, involving decreases in amounts of key photosynthetic enzymes, including Rubisco. This decreases the rate of photosynthesis, and potentially would allow resources (e.g. amino acids) to be remobilized from the leaves and reinvested in sink growth to readjust the sink-source balance. In the final part of the review, I argue that similar changes of Rubisco and, possibly, other proteins are probably also involved during acclimation to high CO2.  相似文献   

16.
A newly abundant Gracilaria species in the sounds of southeastern North Carolina has become a problem for commercial fishing and industries drawing water from the lower Cape Fear River. DNA sequence analyses have shown that this species is Gracilaria vermiculophylla, a taxon originally described from East Asia. Surveys for G. vermiculophylla have shown that it has a discontinuous distribution in the sounds of southeastern North Carolina, and suggest that it is spreading. Gracilaria vermiculophylla meets 6 of the 10 criteria used to help identify invasive species in that it has only recently appeared in southeastern North Carolina; is associated with human mechanisms of dispersal; has a restricted distribution; has disjunct populations in isolated oceans; no means of active dispersal, and an exotic evolutionary origin. The species may also meet two additional criteria as its local range is believed to be expanding, and it is filling a previously unoccupied seasonal niche. These factors taken together strongly suggest that G. vermiculophylla is an invasive species in southeastern North Carolina.  相似文献   

17.
The effect of prolonged illumination (60 min) with photosynthetically active monochromatic radiation of low intensity (3 μmol m−2 s−1) and high intensity (60 μmol m−2 s−1), corresponding to the physiological conditions and light stress conditions, respectively, was studied in the algae Nitellopsis obtusa. Illumination of Nitellopsis obtusa cells with strong light was associated with activation of the xanthophyll cycle, manifested by the deepoxidation of violaxanthin and accumulation of antheraxanthin and zeaxanthin. At the same time, the efficient singlet excitation quenching in the photosynthetic apparatus was activated, as demonstrated by the decrease in the intensity of the chlorophyll a fluorescence emission by ca 50 %. The difference of the fluorescence excitation spectra recorded before and after the light treatment match the difference absorption spectrum of the xanthophyll cycle pigments. The illumination with low light intensity resulted also in the chlorophyll a fluorescence quenching but the effect was very small (less than 10 %). The fluorescence quenching is interpreted in terms of the energy transfer between the Qy energy level of chlorophyll a and the 21 Ag energy level of zeaxanthin. The singlet energy levels of carotenoids, corresponding to the green spectral region, are also taken into consideration in the interpretation of the excitation energy exchange between the carotenoids and chlorophylls. Possible molecular mechanisms involved in the activation of the strong and the weak excitation quenching, including violaxanthin isomerization, and possible physiological functions of such pathways of energy transfer are discussed.  相似文献   

18.
A first report on the problematic phylogenetic position ofHeptacodium (2 spp.; China) using molecular data from chloroplast DNA is presented. Amplification of ORF2280 homolog region was executed in a number of representative taxa in order to determine ifHeptacodium shows similar structural rearrangements as other Dipsacales. DNA sequences ofndhF were generated to clarify the phylogenetic position ofHeptacodium among Caprifoliaceae (s.l.). Six outgroup taxa and fifteen representatives of Dipsacales were sampled and more than 2100 basepairs ofndhF sequence were used in a cladistic analysis. Parsimony analysis produced two shortest trees and showedHeptacodium as sister to all members of Caprifoliaceae (s.str.), although weakly supported. Additionally, trees were constructed withndhF data supplemented with availablerbcL sequences and a morphological data set. Results of all analyses support an unresolved basal position forHeptacodium among Caprifoliaceae (s.l.), which in part explains the difficulty experienced previously in classifying the genus.  相似文献   

19.
Batrachospermum arcuatum specimens were analysed from seven stream segments in North China. Morphological characteristics were observed and cluster analysis was used to evaluate the divergence among thalli from. Sequence data of the rbcL gene (chloroplast gene) and cox2-3 spacer region (mitochondrial gene) were also utilized to evaluate genetic variation in specimens among stream segments. The specimens from four of the streams were monoecious, while the individuals at the other three locations were dioecious. Cluster analysis showed that the monoecious specimens were not separated from the dioecious specimens, based on morphology, but rather the specimens were grouped by geographical closeness and habitat similarity. Likewise, the combined analyses of rbcL and the cox2-3 spacer data from provided more evidence that breeding system (monoecy vs. dioecy) is not a good morphological character to distinguish species.  相似文献   

20.
Rates of net CO2 uptake were examined in developing leaves of Hydrocotyle bonariensis. Leaves that developed under high photosynthetically active radiation (48 mol m-2 day-1 PAR) were smaller, thicker, and reached maximum size sooner than did leaves that developed under low PAR (4.8 mol m-2 day-1). Maximum net CO2 uptake rates were reached after 5 to 6 days expansion for both the low and the high PAR leaves. Leaves grown at high PAR had higher maximum photosynthetic rates and a higher PAR required for light saturation but showed a more rapid decline in rate with age than did low PAR leaves. To assess the basis for the difference observed in photosynthetic rates, CO2 diffusion conductances and the mesophyll surface available for CO2 absorption were examined for mature leaves. Stomatal conductance was the largest conductance in all treatments and did not vary appreciably with growth PAR. Mesophyll conductance progressively increased with growth PAR (up to 48 mol m-2 day-1) as did the mesophyll surface area per unit leaf area, but the cellular conductance exhibited most of its increase at low PAR (up to 4.8 mol m-2 day-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号