首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

2.
13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane αII-helices. Surprisingly, the 13C NMR spectra of [3-13C]Ala-D85N turned out to be very similar to those of [3-13C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane αII-helices of the M-like state are suppressed already by fluctuation motions in the order of 104-105 Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic α-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane α-helices followed by Pro residues in [1-13C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-13C]Val and [3-13C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.  相似文献   

3.
4.
We have examined how cytoplasmic surface structures of [3-(13)C]Ala-labeled bacteriorhodopsin (bR), consisting of the C-terminal alpha-helix and cytoplasmic loops, are altered by site-directed mutations at the former (R227Q) and the latter (A160G, E166G, and A168G) and by cation binding, by means of displacements of the (13)C NMR peaks of Ala228 and Ala233 (C-terminal alpha-helix), Ala103 (C-D loop), and Ala160 (E-F loop). Cytoplasmic ends of the B and F helices were found to undergo fluctuation motions on the order of 10(-5) s, when such surface structures were disrupted, as viewed from suppressed (13)C NMR signals. This happens also for deionized blue membranes of wild type and A160G, with accelerated fluctuations in the loops. Further, cytoplasmic surface structures of Na(+)-regenerated purple membrane from the blue membrane were significantly modified by Ca(2+) ions up to 1 mM under relatively low ionic strength of 10 mM NaCl, although they are very similar at high ionic strength (100 mM NaCl). To interpret these findings, the following two surface structures were proposed. The C-terminal alpha-helix of the wild type at ambient temperature is involved in a perturbed type, probably tilted toward the direction of the B and F helices, to prevent unnecessary fluctuations of these helices for efficient proton uptake during the photocycle. An unperturbed type of helix is achieved when such a surface structure was disrupted at low temperature or in an M-like state. This view is consistent with previously published data for the "proton binding cluster" consisting of Asp104, Glu166, and Glu234.  相似文献   

5.
13C NMR spectra of [1-13C]Val- or -Pro-labeled bacteriorhodopsin (bR) and its single or double mutants, including D85N, were recorded at various pH values to reveal conformation and dynamics changes in the transmembrane -helices, in relation to proton release and uptake between bR and the M-like state caused by modified charged states at Asp85 and the Schiff base (SB). It was found that the D85N mutant acquired local fluctuation motion with a frequency of 104 Hz in the transmembrane B -helix, concomitant with deprotonation of SB in the M-like state at pH 10, as manifested from a suppressed 13C NMR signal of the [1-13C]-labeled Val49 residue. Nevertheless, local dynamics at Pro50 neighboring with Val49 turned out to be unchanged, irrespective of the charged state of SB as viewed from the 13C NMR of [1-13C]-labeled Pro50. This means that the transmembrane B -helix is able to acquire the fluctuation motion with a frequency of 104 Hz beyond the kink at Pro50 in the cytoplasmic side. Concomitantly, fluctuation motion at the C helix with frequency in the order of 104 Hz was found to be prominent, due to deprotonation of SB at pH 10, as viewed from the 13C NMR signal of Pro91. Accordingly, we have proposed here a novel mechanism as to proton uptake and transport based on a dynamic aspect that a transient environmental change from a hydrophobic to hydrophilic nature at Asp96 and SB is responsible for the reduced pKa value which makes proton uptake efficient, as a result of acquisition of the fluctuation motion at the cytoplasmic side of the transmembrane B and C -helices in the M-like state. Further, it is demonstrated that the presence of a van der Waals contact of Val49 with Lys216 at the SB is essential to trigger this sort of dynamic change, as revealed from the 13C NMR data of the D85N/V49A mutant.  相似文献   

6.
13C Nuclear magnetic resonance (NMR) spectra of [3-(13)C]Ala-labeled bacteriorhodopsin (bR) were edited to give rise to regio-selective signals from hydrophobic transmembrane alpha-helices by using NMR relaxation reagent, Mn(2+) ion. As a result of selective suppression of (13)C NMR signals from the surfaces in the presence of Mn(2+) ions, several (13)C NMR signals of Ala residues in the transmembrane alpha-helices were identified on the basis of site-directed mutagenesis without overlaps from (13)C NMR signals of residues located near the bilayer surfaces. The upper bound of the interatomic distances between (13)C nucleus in bR and Mn(2+) ions bound to the hydrophilic surface to cause suppressed peaks by the presence of Mn(2+) ion was estimated as 8.7 A to result in the signal broadening to 100 Hz and consistent with the data based on experimental finding. The Ala C(beta) (13)C NMR peaks corresponding to Ala-51, Ala-53, Ala-81, Ala-84, and Ala-215 located around the extracellular half of the proton channel and Ala-184 located at the kink in the helix F were successfully identified on the basis of (13)C NMR spectra of bR in the presence of Mn(2+) ion and site-directed replacement of Ala by Gly or Val. Utilizing these peaks as probes to observe local structure in the transmembrane alpha-helices, dynamic conformation of the extracellular half of bR at ambient temperature was examined, and the local structures of Ala-215 and 184 were compared with those elucidated at low temperature. Conformational changes in the transmembrane alpha-helices induced in D85N and E204Q and its long-range transmission from the proton release site to the site around the Schiff base in E204Q were also examined.  相似文献   

7.
We have recorded (13)C NMR spectra of [3-(13)C]Ala-labeled wild-type bacteriorhodopsin (bR) and its mutants at Arg(82), Asp(85), Glu(194), and Glu(204) along the extracellular proton transfer chain. The upfield and downfield displacements of the single carbon signals of Ala(196) (in the F-G loop) and Ala(126) (at the extracellular end of helix D), respectively, revealed conformational differences in E194D, E194Q, and E204Q from the wild type. The same kind of conformational change at Ala(126) was noted also in the Y83F mutant, which lacks the van der Waals contact between Tyr(83) and Ala(126) present in the wild type. The absence of a negative charge at Asp(85) in the site-directed mutant D85N induced global conformational changes, as manifested in displacements or suppression of peaks from the transmembrane helices, cytoplasmic loops, etc., as well as the local changes at Ala(126) and Ala(196) seen in the other mutants. Unexpectedly, no conformational change at Ala(126) was observed in R82Q (even though Asp(85) is protonated at pH 6) or in D85N/R82Q. The changes induced in the Ala(126) signal when Asp(85) is uncharged could be interpreted therefore in terms of displacement of the positive charge of Arg(82) toward Tyr(83), where Ala(126) is located. It is possible that disruption of the proton transfer chain after protonation of Asp(85) in the photocycle could cause the same kind of conformational change we detect at Ala(196) and Ala(126). If so, the latter change would be also the result of rearrangement of the side chain of Arg(82).  相似文献   

8.
We have recorded 13C NMR spectra of [3-13C]-, [1-13C]Ala-, and [1-13C]Val-labeled bacteriorhodopsin (bR), W80L and W12L mutants and bacterio-opsin (bO) from retinal-deficient E1001 strain, in order to examine the possibility of their millisecond to microsecond local fluctuations with correlation time in the order of 10−4 to 10−5 s, induced or prevented by disruption or assembly of two-dimensional (2D) crystalline lattice, respectively, at ambient temperature. The presence of disrupted or disorganized 2D lattice for W12L, W80L and bO from E1001 strain was readily visualized by increased relative proportions of surrounding lipids per protein, together with their broadened 13C NMR signals of transmembrane α-helices and loops in [3-13C]Ala-labeled proteins, with reference to those of wild-type. In contrast, 13C CP-MAS NMR spectra of [1-13C]Ala- and Val-labeled these mutants were almost completely suppressed, owing to the presence of fluctuations with time scale of 10−4 s interfered with magic angle spinning. In particular, 13C NMR signals of [1-13C]Ala-labeled transmembrane α-helices of wild-type were almost completely suppressed at the interface between the surface and inner part (up to 8.7 Å deep from the surface) with reference to those of the similarly suppressed peaks by Mn2+-induced accelerated spin-spin relaxation rate. Such fluctuation-induced suppression of 13C NMR peaks from the interfacial regions, however, was less significant for [1-13C]Val-labeled proteins, because fluctuation motions in Val residues with bulky side-chains at the Cα moiety were modified to those of longer correlation time (>10−4 s), if any, by residue-specific manner. To support this view, we found that such suppressed 13C NMR signals of [1-13C]Ala-labeled peaks in the wild-type were recovered for D85N and bO in which correlation times of fluctuations were shifted to the order of 10−5 s due to modified helix-helix interactions as previously pointed out [Biochemistry, 39 (2000) 14472; J. Biochem. (Tokyo) 127 (2000) 861].  相似文献   

9.
By varying the pH, the D85N mutant of bacteriorhodopsin provides models for several photocycle intermediates of the wild-type protein in which D85 is protonated. At pH 10.8, NMR spectra of [zeta-(15)N]lys-, [12-(13)C]retinal-, and [14,15-(13)C]retinal-labeled D85N samples indicate a deprotonated, 13-cis,15-anti chromophore. On the other hand, at neutral pH, the NMR spectra of D85N show a mixture of protonated Schiff base species similar to that seen in the wild-type protein at low pH, and more complex than the two-state mixture of 13-cis,15-syn, and all-trans isomers found in the dark-adapted wild-type protein. These results lead to several conclusions. First, the reversible titration of order in the D85N chromophore indicates that electrostatic interactions have a major influence on events in the active site. More specifically, whereas a straight chromophore is preferred when the Schiff base and residue 85 are oppositely charged, a bent chromophore is found when both the Schiff base and residue 85 are electrically neutral, even in the dark. Thus a "bent" binding pocket is formed without photoisomerization of the chromophore. On the other hand, when photoisomerization from the straight all-trans,15-anti configuration to the bent 13-cis,15-anti does occur, reciprocal thermodynamic linkage dictates that neutralization of the SB and D85 (by proton transfer from the former to the latter) will result. Second, the similarity between the chromophore chemical shifts in D85N at alkaline pH and those found previously in the M(n) intermediate of the wild-type protein indicate that the latter has a thoroughly relaxed chromophore like the subsequent N intermediate. By comparison, indications of L-like distortion are found for the chromophore of the M(o) state. Thus, chromophore strain is released in the M(o)-->M(n) transition, probably coincident with, and perhaps instrumental to, the change in the connectivity of the Schiff base from the extracellular side of the membrane to the cytoplasmic side. Because the nitrogen chemical shifts of the Schiff base indicate interaction with a hydrogen-bond donor in both M states, it is possible that a water molecule travels with the Schiff base as it switches connectivity. If so, the protein is acting as an inward-driven hydroxyl pump (analogous to halorhodopsin) rather than an outward-driven proton pump. Third, the presence of a significant C [double bond] N syn component in D85N at neutral pH suggests that rapid deprotonation of D85 is necessary at the end of the wild-type photocycle to avoid the generation of nonfunctional C [double bond] N syn species.  相似文献   

10.
We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.  相似文献   

11.
Kimura S  Naito A  Tuzi S  Saitô H 《Biopolymers》2001,58(1):78-88
We have recorded (13)C NMR spectra of selectively [3-(13)C]Ala-, [1-(13)C]Ala-, or [1-(13)C]Val-labeled synthetic transmembrane peptides of bacteriorhodopsin (bR) and enzymatically cleaved C-2 fragment in the solid and dimyristoylphosphatidylcholine bilayer. It turned out that these transmembrane peptides either in hexafluoroisopropanol or cast from it take an ordinary alpha-helix (alpha(I)-helix) irrespective of their amino acid sequences with reference to the conformation-dependent (13)C chemical shifts of (Ala)(n) taking the alpha-helix form. These transmembrane peptides are not always static in the lipid bilayer as in the solid state but undergo rigid-body motions with various frequencies as estimated from suppressed peaks either by fast isotropic or large-amplitude motions (>10(8) Hz) or intermediate frequencies (10(5) or 10(3) Hz). Further, (13)C chemical shifts of the [3-(13)C]Ala-labeled peptides in the bilayer were displaced downfield by 0.3-1.1 ppm depending upon amino acid sequence with respect to those in the solid state, which were explained in terms of local conformational fluctuation (10(2) Hz) deviated from the torsion angles (alpha(II)-helix) from those of standard alpha-helix, under anisotropic environment in lipid bilayer, in addition to the above-mentioned rigid-body motions. The carbonyl (13)C peaks, on the other hand, are not sensitively displaced by such local anisotropic fluctuations, because they are more sensitive to the manner of hydrogen-bond interactions. The amino acid sequences of these peptides inserted within the bilayer were not always the same as those of intact bR, causing disposition of the transmembrane alpha-helical segment from that of intact bR. Finally, we confirmed that the (13)C NMR peak positions of the random coil form are located at the boundary between the alpha-helix and a turned structure in loop regions.  相似文献   

12.
We have examined the (13)C-NMR spectra of [3-(13)C] Ala-labeled bacteriorhodopsin and its mutants by varying a variety of environmental or intrinsic factors such as ionic strength, temperature, pH, truncation of the C-terminal alpha helix, and site-directed mutation at cytoplasmic loops, in order to gain insight into a plausible surface structure arising from the C-terminal alpha helix and loops. It is found that the surface structure can be characterized as a complex stabilized by salt bridges or metal-mediated linkages among charged side chains. The surface complex in bacteriorhodopsin is most pronounced under the conditions of 10 mM NaCl at neutral pH but is destabilized to yield relaxed states when environmental factors are changed to high ionic strength, low pH and higher temperature. These two states were readily distinguished by associated spectral changes, including suppressed (cross polarization-magic angle spinning NMR) or displaced (upfield) (13)C signals from the C-terminal alpha helix, or modified spectral features in the loop region. It is also noteworthy that such spectral changes, when going from the complexed to relaxed states, occur either when the C-terminal alpha helix is deleted or site-directed mutations were introduced at a cytoplasmic loop. These observations clearly emphasize that organization of the cytoplasmic surface complex is important in the stabilization of the three-dimensional structure at ambient temperature, and subsequently plays an essential role in biological functions.  相似文献   

13.
The melibiose carrier of Escherichia coli is a transmembrane protein that comprises 12 transmembrane helices connected by periplasmic and cytoplasmic loops, with both the N- and C-termini located on the cytoplasmic side. Our previous studies of second-site revertants suggested proximity between several helices, including helices XI and I. In this study, we constructed six double cysteine mutants, each having one cysteine in helix I and the other in helix XI: three mutants, K18C/S380C, D19C/S380C, and F20C/S380C, have their cysteine pairs near the cytoplasmic side of the carrier, and the other three, T34C/G395C, D35C/G395C, and V36C/G395C, have their cysteine pairs near the periplasmic side. In the absence of substrate, disulfide formations catalyzed by iodine and copper-(1,10-phenanthroline)(3) indicate that helix I and helix XI are in immediate proximity to each other on the periplasmic side but not on the cytoplasmic side, as shown by protease cleavage analyses. We infer that the two helices are tilted with respect to each other, with the periplasmic sides in close proximity.  相似文献   

14.
The pyridine nucleotide transhydrogenase of Escherichia coli carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD(+) and NADP(+). The membrane domain (domain II) of the enzyme is composed of 13 transmembrane helices. Previous studies (N. A. Glavas et al., Biochemistry 34, 7694-7702, 1995) have suggested that betaHis91 in transmembrane helix 9 is involved in the translocation pathway of protons across the membrane. In this study we have replaced amino acid residues on the same face of helix 9 as betaHis91 by single cysteine residues. We then examined the effect of the sulfhydryl inhibitors N-ethylmaleimide (NEM) and p-chloromercuriphenylsulfonate (pCMPS) on enzyme activity and, in the case of [(14)C]NEM, as an enzyme label. The pattern of enzyme inhibition and labelling is consistent with the presence of an aqueous cavity through domain II from the cytosolic surface to the region of betaHis91. Residue betaAsn222 in helix 13, which appears also to be involved in the proton pathway across domain II, may interface with this aqueous cavity. A further series of mutants of betaGlu124 on helix 10 confirms the proposal (P. D. Bragg and C. Hou, Arch. Biochem. Biophys. 363, 182-190, 1999) that this residue is involved in passive permeation of protons across domain II.  相似文献   

15.
CD39 can exist in at least two distinct functional states depending on the presence and intact membrane integration of its two transmembrane helices. In native membranes, the transmembrane helices undergo dynamic rotational motions that are required for enzymatic activity and are regulated by substrate binding. In this study, we show that bilayer mechanical properties regulate conversion between the two enzymatic functional states by modulating transmembrane helix dynamics. Alteration of membrane properties by insertion of cone-shaped or inverse cone-shaped amphiphiles or by cholesterol removal switches CD39 to the same enzymatic state that removal or solubilization of the transmembrane domains does. The same membrane alterations increase the propensity of both transmembrane helices to rotate within the packed structure, resulting in a structure with greater mobility but not an altered primary conformation. Membrane alteration also abolishes the ability of the substrate to stabilize the helices in their primary conformation, indicating a loss of coupling between substrate binding and transmembrane helix dynamics. Removal of either transmembrane helix mimics the effect of membrane alteration on the mobility and substrate sensitivity of the remaining helix, suggesting that the ends of the extracellular domain have intrinsic flexibility. We suggest that a mechanical bilayer property, potentially elasticity, regulates CD39 by altering the balance between the stability and flexibility of its transmembrane helices and, in turn, of its active site.  相似文献   

16.
C Ganea  C Gergely  K Ludmann    G Váró 《Biophysical journal》1997,73(5):2718-2725
The changes in the photocycle of the wild type and several mutant bacteriorhodopsin (D96N, E204Q, and D212N) were studied on dried samples, at relative humidities of 100% and 50%. Samples were prepared from suspensions at pH approximately 5 and at pH approximately 9. Intermediate M with unprotonated Schiff base was observed at the lower humidity, even in the case where the photocycle in suspension did not contain this intermediate (mutant D212N, high pH). The photocycle of the dried sample stopped at intermediate M1 in the extracellular conformation; conformation change, switching the accessibility of the Schiff base to the cytoplasmic side, and proton transport did not occur. The photocycle decayed slowly by dissipating the absorbed energy of the photon, and the protein returned to its initial bacteriorhodopsin state, through several M1-like substates. These substates presumably reflect different paths of the proton back to the Schiff base, as a consequence of the bacteriorhodopsin adopting different conformations by stiffening on dehydration. All intermediates requiring conformational change were hindered in the dried form. The concentration of intermediate L, which appears after isomerization of the retinal from all-trans to 13-cis, during local relaxation of the protein, was unusually low in dried samples. The lack of intermediates N and O demonstrated that the M state did not undergo a change from the extracellular to the cytoplasmic conformation (M1 to M2 transition), as already indicated by Fourier transform infrared spectroscopy, quasielastic incoherent neutron scattering, and electric signal measurements described in the literature.  相似文献   

17.
We have recorded (13)C NMR spectra of [2-(13)C]-, [1-(13)C]-, [3-(13)C],- and [1,2,3-(13)C(3)]Ala-labeled bacteriorhodopsin (bR), and its mutants, A196G, A160G, and A103C, by means of cross polarization-magic angle spinning (CP-MAS) and dipolar decoupled-magic angle spinning (DD-MAS) techniques, to reveal the conformation and dynamics of bR, with emphasis on the loop and C-terminus structures. The (13)C NMR signals of the loop (C-D, E-F, and F-G) regions were almost completely suppressed from [2-(13)C]-, [1-(13)C]Ala-, and [1-(13)C]Gly-labeled bR, due to the presence of conformational fluctuation with correlation times of 10(-4) s that interfered with the peak-narrowing by magic angle spinning. The observation of such suppressed peaks for specific residues provides a unique means of detecting intermediate frequency motions on the time scale of ms or micros in the surface loops of membrane proteins. Instead, the three well-resolved (13)C CP-MAS NMR signals of [2-(13)C]Ala-bR, at 50.38, 49.90, and 47.96 ppm, were ascribed to the C-terminal alpha-helix previously proposed from the data for [3-(13)C]Ala-bR: the former two peaks were assigned to Ala 232 and 238, in view of the results of successive proteolysis experiments, while the highest-field peak was ascribed to Ala 235 prior to Pro 236. Even such (13)C NMR signals were substantially broadened when (13)C NMR spectra of fully labeled [1,2,3-(13)C]Ala-bR were recorded, because the broadening and splitting of peaks due to the accelerated transverse relaxation rate caused by the increased number of relaxation pathways through a number of (13)C-(13)C homo-nuclear dipolar interactions and scalar J couplings, respectively, are dominant among (13)C-labeled nuclei. In addition, approximate correlation times for local conformational fluctuations of different domains, including the C-terminal tail, C-terminal alpha-helix, loops, and transmembrane alpha-helices, were estimated by measurement of the spin-lattice relaxation times in the laboratory frame and spin-spin relaxation times under the conditions of cross-polarization-magic angle spinning, and comparative study of suppressed specific peaks between the CP-MAS and DD-MAS experiments.  相似文献   

18.
A number of ion channels contain transmembrane (TM) alpha-helices that contain proline-induced molecular hinges. These TM helices include the channel-forming peptide alamethicin (Alm), the S6 helix from voltage-gated potassium (Kv) channels, and the D5 helix from voltage-gated chloride (CLC) channels. For both Alm and KvS6, experimental data implicate hinge-bending motions of the helix in an aspect of channel gating. We have compared the hinge-bending motions of these TM helices in bilayer-like environments by multi-nanosecond MD simulations in an attempt to describe motions of these helices that may underlie possible modes of channel gating. Alm is an alpha-helical channel-forming peptide, which contains a central kink associated with a Gly-x-x-Pro motif in its sequence. Simulations of Alm in a TM orientation for 10 ns in an octane slab indicate that the Gly-x-x-Pro motif acts as a molecular hinge. The S6 helix from Shaker Kv channels contains a Pro-Val-Pro motif. Modeling studies and recent experimental data suggest that the KvS6 helix may be kinked in the vicinity of this motif. Simulations (10 ns) of an isolated KvS6 helix in an octane slab and in a POPC bilayer reveal hinge-bending motions. A pattern-matching approach was used to search for possible hinge-bending motifs in the TM helices of other ion channel proteins. This uncovered a conserved Gly-x-Pro motif in TM helix D5 of CLC channels. MD simulations of a model of hCLC1-D5 spanning an octane slab suggest that this channel also contains a TM helix that undergoes hinge-bending motion. In conclusion, our simulations suggest a model in which hinge-bending motions of TM helices may play a functional role in the gating mechanisms of several different families of ion channels.  相似文献   

19.
Lew S  Ren J  London E 《Biochemistry》2000,39(32):9632-9640
To explore the influence of amino acid composition on the behavior of membrane-inserted alpha-helices, we examined the behavior of Lys-flanked polyleucyl (pLeu) helices containing a single polar/ionizable residue within their hydrophobic core. To evaluate the location of the helices within the membrane by fluorescence, each contained a Trp residue at the center of the sequence. When incorporated into dioleoylphosphatidylcholine (DOPC) model membrane vesicles, pLeu helices with or without a single Ser, Asn, Lys, or Asp residue in the hydrophobic core maintained a transmembrane state (named the N state) at neutral and acidic pH. In this state, the central Trp exhibited highly blue-shifted fluorescence, and fluorescence quenching by nitroxide-labeled lipids showed it located at the bilayer center. A state in which Trp fluorescence red-shifted by several nanometers (named the B state) was observed above pH 10-11. B state formation appears to result from deprotonation of the flanking Lys residues. Despite the red shift in Trp emission, fluorescence quenching showed that in the B state the Trp at most is only slightly shallower than in the N state, suggesting the B state also is a transmembrane or near-transmembrane structure. The B state is characterized by increased helix oligomerization, as shown by the dependence of Trp lambda(max) on the concentration of the peptide within the bilayer at high pH. The pLeu peptide with a Asp residue in the core underwent a pH-dependent transition at a lower pH than the other peptides (pH 8-9). At high pH, it exhibited both a more highly red-shifted fluorescence and shallower Trp location than the other peptides. This state (named the S state) did not exhibit a concentration-dependent Trp lambda(max). We attribute S state behavior to the formation of a charged Asp residue at high pH, and a consequent movement of the Asp toward the membrane surface, resulting in the formation of a nontransmembrane state. We conclude that a polar or ionizable residue can readily be tolerated in a single transmembrane helix, but that the charges on ionizable residues in the core and regions flanking the helix significantly modulate the stability of transmembrane insertion and/or helix-helix association.  相似文献   

20.
bR, N-like and O-like intermediate states of [15N]methionine-labelled wild type and D85N/T170C bacteriorhodopsin were accumulated in native membranes by controlling the pH of the preparations. 15N cross polarization and magic angle sample spinning (CPMAS) NMR spectroscopy allowed resolution of seven out of nine resonances in the bR-state. It was possible to assign some of the observed resonances by using 13C/15N rotational echo double resonance (REDOR) NMR and Mn2+ quenching as well as D2O exchange, which helps to identify conformational changes after the bacteriorhodopsin Schiff base reprotonation. The significant differences in chemical shifts and linewidths detected for some of the resonances in N- and O-like samples indicate changes in conformation, structural heterogeneity or altered molecular dynamics in parts of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号