首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When entrapped into liposomes composed of phosphatidylcholine and other lipids, β-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) purified from Aspergillus oryzae could cleave the β-galactosidic bond of the terminal galactose of galactocerebroside and GM1-ganglioside (II3NeuAc-GgOse4Cer, galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide), while the free enzyme could not. The products of the hydrolysis of galactocerebroside were found to be β-galactose and ceramide, which was confirmed by using a fluorescent analog of galactocerebroside, 1-O-galactosyl-2-N-(1-dimethylaminonaphthalene-5-sulfonyl)-sphingosine, as substrate. The formation of GM2-ganglioside (II3NeuAc-GgOse3Cer, N-acetylgalactosaminyl-(N-acetylneuraminosyl)-galactosylglucosylceramide) by the hydrolysis of GM1-ganglioside was also demonstrated. The lipid composition of the liposomes influenced the amount of the enzyme entrapped and the activity of the trapped enzyme. A large amount of the enzyme was entrapped into the liposomes composed of phosphatidylcholine-cholesterol-stearoylamine (molar ratio, 7:2:1). The enzyme trapped in the liposomes and that in those of phosphatidylcholine-cholesterol-sulfatide (molar ratio, 7:2:1) had higher activity on galactocerebroside and GM1-ganglioside than that in other liposomes. The activity of β-galactosidase trapped in liposomes was increased in the presence of detergent, while that of the free enzyme was not changed.By a similar procedure to introduce enzymes into hydrophobic environments, enzymes other than β-galactosidase might come to possess different substrate specificities.  相似文献   

2.
A series of novel N1-{5-[(naphthalene-2-yloxy)methyl]-1,3,4-oxadiazol-2-yl}-N4-(4-substitutedbenzaldehyde)-semicarbazone, N1-{5-[(naphthalene-2-yloxy)methyl]-1,3,4-oxadiazol-2-yl}-N4-[1-(4-substitutedphenyl)ethanone]-semicarbazone and N1-{5-[(naphthalene-2-yloxy)methyl]-1,3,4-oxadiazol-2-yl}-N4-[1-(4-substitutedphenyl) (phenyl) methanone]-semicarbazone were designed and synthesized on the basis of semicarbazone based pharmacophoric model to meet the structural requirements necessary for anticonvulsant activity. The anticonvulsant activities of the compounds were investigated using maximal electroshock seizure (MES), subcutaneous pentylenetrtrazole (scPTZ) and subcutaneous strychnine (scSTY) models. Some of the selected active compounds were subjected to GABA assay to confirm their mode of action. The efforts were also made to establish structure activity relationships among synthesized compounds. The results of the present studying validated that the pharmacophoric model with four binding sites is essential for anticonvulsant activity.  相似文献   

3.
Preparations of 2-epi-fortimicin A (4) from 2-epi-fortimicin B (3) are described. In contrast to the previously reported, selective 4-N-acylation of 1,2′,6′-tri-N-benzyloxycarbonylfortimicin B (8) with N-(N-benzyloxycarbonylglycyloxy)succinimide, 1,2′,6′-tri-N-benzyloxycarbonyl-2-epi-fortimicin B (5) underwent predominant 2-O,4-N-diacylation under similar conditions. Proof of the structure of the diacylated product is presented, with evidence that the diacylated product is formed by initial intramolecular, base-catalyzed 2-O-acylation. The in vitro antibacterial activities of 2-epi-fortimicin A (4), 2-O-glycyl-2-epi-fortimicin A (11), 1-N-glycyl-2-epi-fortimicin A (12), and 5-deoxy-2-epi-fortimicin A (13) are reported.  相似文献   

4.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

5.
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure–activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 (18F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([18F]-14) in high radiochemical yield and specific activity. In vivo studies of [18F]-14 revealed this agent as a promising probe for molecular imaging of glioma.  相似文献   

6.
The effect of P[N,N-bis(2-chloroethyl)amino]phenylacetate esters of 3β-hydroxy-methyl-17α-aza-d-homo-5α-androstan-17-one (compound 3) and 3β-hydroxy-17α-aza-d-homo-5α-androstane (compound 2) on sister-chromatid exchange (SCE) frequencies and on human lymphocytes proliferation kinetics was studied. The results are compared with those of the P[N,N-bis(2-chloroethyl)phenylacetate esters of 3β-hydroxy-17α-aza-d-homo-5α-androstan-17-one (compound 1). All compounds were found to be active in inducing markedly increased SCE rates and cell division delays. A correlation between potency for SCE induction, effectiveness in cell division delay and previously established antitumour activity of these compounds was observed.  相似文献   

7.
Gamma-secretase modulators (GSMs) are promising disease-modifying drugs for Alzheimer’s disease because they can selectively decrease pathogenic amyloid-β42 (Aβ42) levels. Here we report the discovery of orally active N-ethylpyridine-2-carboxamide derivatives as GSMs. The isoindolinone moiety of 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethyl-2,3-dihydro-1H-isoindol-1-one hydrogen chloride (1a) was replaced with a picolinamide moiety. Optimization of the benzyl group significantly improved GSM activity and mouse microsomal stability. 5-{8-[([1,1′-Biphenyl]-4-yl)methoxy]-2-methylimidazo[1,2-a]pyridin-3-yl}-N-ethylpyridine-2-carboxamide hydrogen chloride (1v) potently reduced Aβ42 levels with an IC50 value of 0.091 µM in cultured cells without inhibiting CYP3A4. Moreover, 1v demonstrated a sustained pharmacokinetic profile and significantly reduced brain Aβ42 levels in mice.  相似文献   

8.
9.
A rapid and sensitive assay for the determination of cathepsin A activity is reported. This method is based on fluorimetric detection of a dansylated peptide, 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe, enzymatically formed from the substrate 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe-l-Leu, after separation by high-performance liquid chromatography using a C18 reversed-phase column and isocratic elution. This method is sensitive enough to measure 5-dimethylaminonaphthalene-1-sulfonyl-l-Phe at concentrations as low as 300 fmol, yields highly reproducible results and requires less than 7.0 min per sample for separation and quantitation. The optimum pH for cathepsin A activity was 4.5–5.0. The Km and Vmax values were respectively 14.9 μM and 27.91 pmol/μg/h with the use of enzyme extract obtained from mouse kidney. Cathepsin A activity was strongly inhibited by Ag+, Hg2+, diisopropylfluorophosphate and p-chloromercuriphenylsulphonic acid. Among the organs examined in a mouse, the highest specific activity of the enzyme was found in kidney. The sensitivity and selectivity of this method will aid in efforts to examine the physiological role of this peptidase.  相似文献   

10.
A series of novel 3-aryl-1-(4-tert-butylbenzyl)-1H-pyrazole-5-carbohydrazide hydrazone derivatives were synthesized and the effects of all the compounds on A549 cell growth were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound (E)-1-(4-tert-butylbenzyl)-N′-(1-(5-chloro-2-hydroxyphenyl) ethylidene)-3-(4-chlorophenyl)-1H-pyrazole-5-carbohydrazide (3e) possessed the highest growth inhibitory effect and induced apoptosis of A549 lung cancer cells.  相似文献   

11.
Five new N-acetyldopamine (NADA) derivatives (1–5) and one known NADA quinone methide (6) were isolated from Periostracum Cicadae (the cast-off shell of the cicada Cryptotympana pustulata Fabricius), which is known as chantui in China and is used in traditional Chinese medicine to treat soreness of the throat, hoarseness, itching, and spasms. By combined analysis of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, CD spectra, and chemical evidence, the structures of the isolated compounds were established as (R)-N-(2-(3,4-dihydroxyphenyl)-1-ethoxy-2-oxoethyl)acetamide (1), (1R,2R)-N-(1,2-diethoxy-2-(3,4-dihydroxyphenyl)-ethyl)acetamide (2), (R)-N-(1-acetamido-2-ethoxy-2-(3,4-dihydroxyphenyl)-ethyl)acetamide (3), (1R,2R)-N-(2-(3,4-dihydroxyphenyl)-2-ethoxy-1-methoxyethyl)acetamide (4), (1S,2S)-N-(2-(3,4-dihydroxyphenyl)-2-ethoxy-1-methoxyethyl)acetamide (5), and (R)-N-(2-(3,4-dihydroxyphenyl)-2-methoxyethyl)acetamide (6).  相似文献   

12.
2-Acetamino-3,4,6-tri-O-acetly-1-N-[N-(benzyloxycarbonly-l-seryl)-l-aspart-1-oyl-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine,2-acetamido-3,4,6-tri,O-acetyl-1-N-[N-(benzyloxycarbonyl-l-seryl)-l-aspart-1-oyl-(l-alanine methyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-benzyloxycarbonyl)-l-aspart-1-oyl-(l-alanyl-l-threonyl-l-leucyl-l-alanyl-l-serine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-d-glucopyranosylamine (7), which span the amino acid sequence 17-23 of bovine pancreatic deoxyribonuclease A and contain a 2-acetamido-2-deoxy-d-glucose residue, were synthesized. On treatment with lithium hydroxide, the blocked glycohexapeptide 7 gave 2-acetamido-1-N-[N-(benzyloxycarbonyl)-l-aspart-1-oyl-(l-alanyl-l-threonyl-l-leucyl-l-alanyl-l-serine)-4-oyl]-2 deoxy-β-d-glucopyranosylamine.  相似文献   

13.
Chemical investigation of polar lipids from the marine eustigmatophyte microalga Nannochloropsis granulata led to the isolation of six betaine lipid diacylglyceryltrimethylhomoserine (DGTS), namely, (2S)-1,2-bis-O-eicosapentaenoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (1), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (2), (2S)-1-O-eicosapentaenoyl-2-O-myristoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (3), (2S)-1-O-eicosapentaenoyl-2-O-palmitoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (4), (2S)-1-O-eicosapentaenoyl-2-O-palmitoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (5), and (2S)-1-O-eicosapentaenoyl-2-O-linoleoylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine (6). Structures of the isolated DGTSs were elucidated based on both spectroscopic technique and degradation methods. This is the first report of isolation of 1 in pure state, and 26 are all new compounds. The isolated betaine lipids showed dose-dependent nitric oxide (NO) inhibitory activity against lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophage cells. Further study suggested that these betaine lipids (16) inhibit NO production in RAW264.7 macrophage cells through downregulation of inducible nitric oxide synthase expression, indicating the possible use as an anti-inflammatory agent. This is the first report of DGTS with anti-inflammatory activity.  相似文献   

14.
Treatment of methyl 4,6-O-benzylidene-α-D-mannopyranoside with dichloromethylenedimethylammonium chloride gave methyl 4,6-O-benzylidene-3-chloro-3-deoxy-2-(N,N-dimethylcarbamoyl)-α-D-altropyranoside and methyl 4,6-O-benzy]idene-2-chloro-2-deoxy-3-(N,N-dimethylcarbamoyl)-α-D-glucopyranoside. Methyl 4,6-O-benzylidene-α-D-allopyranoside gave under analogous conditions the corresponding 2-chloro-3-(N,N-dimethylcarbamoyl)-α-D-altrose and 3-chloro-2-(N,N-dimethylcarbamoyl)-α-D-glucose derivatives. Methyl 5-O-benzyl-α,β-D-ribofuranoside and methyl 5-O-methyl-β-D-ribofuranoside gave only the corresponding methyl 3-chloro-2-(N,N-dimethylcarbamoyl)-α-D-xylofuranoside derivatives.  相似文献   

15.
Five new N-mono-/bis-substituted acetamide glycosides, N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (1), N-methyl-N-{4-O-[3-O-(4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (2), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (3), N-methyl-N-{4-O-[3-O-(6-O-benzoyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (4), and N-methyl-N-{4-O-[3-O-(6-O-trans-cinnamoyl-4-O-α-l-rhamnopyranosyl-β-d-glucopyranosyl)-α-l-rhamnopyranosyl]-phenethyl}-acetamide (5), along with one known acetamide derivative, N-methyl-N-(4-hydroxyphenethyl)-acetamide, the shared aglycone of 25, were isolated from the ethanol extract of the stems of Ephedra sinica. The structures of these new compounds were elucidated on the basis of extensive spectroscopic examination, mainly including multiple 1D and 2D NMR and HRESIMS examinations, and qualitative chemical tests. All N,N-bissubstituted acetamide glycosides were found to show the obvious rotamerism, as in the case of the isolated known N-methyl-N-(4-hydroxyphenethyl)-acetamide, under the experimental NMR conditions, with the ratios of integrated intensities between anti- and syn-rotamers always being found to be about 4 to 3.  相似文献   

16.
A preliminary library of novel N6,5′-bis-ureidoadenosine analogs and related derivatives was prepared and tested for activity against the NCI 60 panel of human cancers. A 2′-O-TBS group was found to be necessary, but not sufficient, for optimal antiproliferative activity. Neither the N6- nor 5′-ureido substituents were sufficient to achieve significant antiproliferative effects when present in the absence of the other. The 2′-O-TBS, and N6,5′-bis-ureido substitution patterns were found to be necessary for optimal antiproliferative activity.  相似文献   

17.
Both anomers of 1-O-[N-(tert-butoxycarbonyl)-L-α-glutamyl]-d-glucopyranose (2) were converted into the unprotected 1-esters, characterised as the trifluoroacetate salts and . On esterification with diazomethane and acetylation, the N-acetylated derivative of and gave the peracetylated 1-O-[5-methyl N-acetyl- and -tert-butoxycarbonyl-L-glutam-1-oyl]-β-d-glucopyranoses ( and ), respectively. Similar treatment of and led to acyl migration, to yield 1,3,4,6-tetra-O-acetyl-2-O-[5-methyl N-(tert-butoxycarbonyl)-L-glutam-1-oyl]-α-d-glucopyranose (,64%) with traces of , and a mixture (≈2:1:0.2) of the N-acetyl analogue of (), , and , respectively. Treatment of 1-O-[5-methyl N-(tert-butoxycarbonyl)-L-glutam-1-oyl]-α-d-glucopyranose (10) and the corresponding glutam-5-oyl isomer 12 in N,N-dimethylformamide with diazomethane for 1 h resulted in 1 → 2 O-acyl transfer to give, upon acetylation, and the fully acetylated 2-O-[1-methyl N-(tert-butoxy- carbonyl)-L-glutam-5-oyl]-α-d>-glucopyranose in yields of 70 and 90 %, respectively; in the absence of diazomethane, 10 and 12 remained unchanged. Similar experiments with α-d-glucopyranosyl esters of N-acetylglycine, N-acetylalanine, and N-(tert-butoxycarbonyl)phenylalanine yielded the 2-O-acyl derivatives in high yields and with high retention of anomeric configuration. The structures of the rearrangement products were proved both spectroscopically and chemically. The results imply that diazomethane functions as a base in the migration process.  相似文献   

18.
SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein β-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply β-1,3-N-acetylglucosaminyl-transferase 7 (β3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein β-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.  相似文献   

19.
Two novel amide alkaloids, wisanine and wisanidine, have been isolated from the petroleum-extract of the roots of Piper guineense, and found to be N-piperidyl-5 (2-methoxy-4,5-methylenedioxyphenyl)-trans-2-trans-4-pentadienamide and N-pyrrolidyl-5-(2-methoxy-4, 5-methylenedioxyphenyl)-trans-2-trans-4-pentadienamide respectively. The structure of wisanidine has been confirmed by synthesis. N-Isobutyl)-trans-2-trans-4-eicosadienamide, recently reported to be present in the fruits of the plant as well as Piperine and Δα,β-dihydropiperine have also been found to be major constituents of the roots.  相似文献   

20.
Because multidrug resistance (MDR) is a serious impediment to the use of chemotherapy in treating cancer patients, great efforts have been made to search for effective MDR-reversing agents. We have developed a brand new synthetic ardeemin derivative, 5-N-formylardeemin, and investigated the activity of which in reversing MDR in MDR cancer cell lines derived from human breast cancer (MCF-7-R) or lung cancer (A549-R). 5-N-formylardeemin strongly enhanced the anti-cancer efficacy of doxorubicin, vincristine through potentiation of apoptosis in both MCF-7-R and A549-R at relatively noncytotoxic concentrations in vitro. Mechanistic studies showed that 5-N-formylardeemin inhibited the expression of MDR-1 (P-gp) and increased the intracellular accumulation of cytotoxic drugs in the MDR cells, suggesting that 5-N-formylardeemin reverses MDR activities through inhibiting MDR-1 expression. Interestingly, 5-N-formylardeemin also sensitized the parent wild-type cancer cells toward these chemotherapeutic agents to various extents. Importantly, in vivo studies demonstrated that 5-N-formylardeemin significantly improved the therapeutic effects of doxorubicin in nude mice bearing A549-R xenografts, which was associated with reduced expression of MDR-1 protein level and increased apoptosis in tumor tissues. These results underscore 5-N-formylardeemin as a potential sensitizer for chemotherapy against multidrug resistant cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号