首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the energetics of glucose uptake in Salmonella typhimurium. Strain PP418 transprots glucose via the phosphoenolpyruvate: glucose phosphotransferase system, while strain PP1705 lacks this system and can only use the galactose permease for glucose uptake. These two strains were cultured anaerobically in glucose-limited chemostats. Both strains produced ethanol and acetate in equimolar amounts but a significant difference was observed in the molar growth yield on glucose (Y Glc). It is suggested that this difference is due to a difference in the energetics of the glucose uptake systems in the two strains.Assuming an equal Y ATP for both strains, we could calculate that uptake of 1 mole of glucose via the galactose permease consumes the equivalent of 0.5 mole of ATP. With the additional assumption that one proton is transported in symport with one glucose molecule, these results imply a stoichiometry of two protons per ATP hydrolysed.Abbreviations PTS Phosphoenolpyruvate: carbohydrate phosphotransferase system - D dilution rate (h-1 - DW dry weight - GalP galactose permease - EtOH ethanol - HAc acetate - Lact lactate - Suc succinate - HFo formate - Glc Glucose - Y Glc, Y ATP yield of cells per glucose or ATP - q specific production rate  相似文献   

2.
An isogenic pair of Escherichia coli strains lacking (pssA) and possessing (wild-type) the enzyme phosphatidylserine synthase was used to estimate the effects of the total lack of phosphatidylethanolamine (PE), the major phospholipid in E. coli membranes, on the activities of several sugar permeases (enzymes II) of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mutant exhibits greatly elevated levels of phosphatidylglycerol (PG), a lipid that has been reported to stimulate the in vitro activities of several PTS permeases. The activities, thermal stabilities, and detergent sensitivities of three PTS permeases, the glucose enzyme II (IIGlc), the mannose enzyme II (IIMan) and the mannitol enzyme II (IIMtl), were characterized. Western blot analyses revealed that the protein levels of IIGlc were not appreciably altered by the loss of PE. In the pssA mutant, IIGlc and IIMan activities were depressed both in vivo and in vitro, with the in vivo transport activities being depressed much more than the in vitro phosphorylation activities. IIMtl also exhibited depressed transport activity in vivo but showed normal phosphorylation activities in vitro. IIMan and IIGlc exhibited greater thermal lability in the pssA mutant membranes than in the wild-type membranes, but IIMtl showed enhanced thermal stability. All three enzymes were activated by exposure to TritonX100 (0.4%) or deoxycholate (0.2%) and inhibited by SDS (0.1%), but IIMtl was the least affected. IIMan and, to a lesser degree, IIGlc were more sensitive to detergent treatments in the pssA mutant membranes than in the wild-type membranes while IIMtl showed no differential effect. The results suggest that all three PTS permeases exhibit strong phospholipid dependencies for transport activity in vivo but much weaker and differential dependencies for phosphorylation activities in vitro, with IIMan exhibiting the greatest and IIMtl the least dependency. The effects of lipid composition on thermal sensitivities and detergent activation responses paralleled the effects on in vitro phosphorylation activities. These results together with those previously published suggest that, while the in vivo transport activities of all PTS enzymes II require an appropriate anionic to zwitterionic phospholipid balance, the in vitro phosphorylation activities of these same enzymes show much weaker and differential dependencies. Alteration of the phospholipid composition of the membrane thus allows functional dissection of transport from the phosphorylation activities of PTS enzyme complexes.  相似文献   

3.
InEnterobacteriaceae the nonphosphorylated form of IIAG1c of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) can inhibit the uptake and subsequent metabolism of glycerol and maltose by binding to, and inhibiting, glycerol kinase and the Ma1K protein of the maltose transport system, respectively. In this report we show that the IIAGlc-Iike domain of the membrane-bound IIN-acetylglucosamine (IINag) of the PTS can replace IIAGlc in aSalmonella typhimurium crr mutant strain that lacks all soluble IIAGlc. The inhibition was most severe in cells which were partially induced for the glycerol or maltose up take systems. TheStreptococcus thermophilus lactose transporter LacS, which also contains a IIAGlc-like domain, could not replace IIAGlc. Neither IINag nor LacS could replace IIAGlc in activation of adenylate cyclase.  相似文献   

4.
A spontaneous mutant 9R-4 resistant to 2-deoxyglucose (2DG) was derived from a wild-type strain Pediococcus halophilus I-13. Phosphoenolpyruvate (PEP)-dependent glucose-6-phosphate formation by the permeabilized 9R-4 cells was < 5% of that observed with the parent I-13. In vitro complementation of PEP-dependent 2DG-6-phosphate formation was assayed with combination of the cytoplasmic and membrane fractions prepared from the I-13 and the mutants (9R-4, and X-160 isolated from nature), which were defective in PEP: mannose phosphotransferase system (man:PTS). The defects in man:PTS of both the strain 9R-4 and X-160 were restricted to the membrane fraction (e.g. EIIman), not to the cytoplasmic one. Kinetic studies on the glucose transport with intact cells and iodoacetate-treated cells also supported the presence of two distinct transport systems in this bacterium as follows: (i) The wild-type I-13 possessed a high-affinity man:PTS (K m=11 M) and a low-affinity proton motive force driven glucose permease (GP) (K m=170 M). (ii) Both 9R-4 and X-160 had only the low-affinity system (K m=181 M for 9R-4, 278 M for X-160). In conclusion, a 2DG-induced selective defect in the membrane component (EIIman) of the man:PTS could partially release glucose-mediated catabolite repression but not frutose-mediated catabolite repression in soy pediococci.Abbreviations GCR glucose-mediated catabolite repression - FCR fructose-mediated catabolite repression - PEP phosphoenolpyruvate - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - glc:PTS phosphoenolpyruvate:glucose phosphotransferase system - GP glucose permease - CCCP carbonylcyanide mchlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - P proton motive force - G-6-P glucose-6-phosphate - 2DG 2-deoxyglucose - IAA iodoacetic acid - EIIman enzyme II component of man:PTS - EIIIman enzyme III component of man:PTS - EIIglc enzyme II component of glc:PTS - EIIIglc enzyme III component of glc:PTS  相似文献   

5.
Summary The ptsG gene of Bacillus subtilis encodes Enzyme IIG1c of the phosphoenolpyruvate: glucose phosphotransferase system. The 3 end of the gene was previously cloned and the encoded polypeptide found to resemble the Enzymes IIIGlc of Escherichia coli and Salmonella typhimurium. We report here cloning of the complete ptsG gene of B. subtilis and determination of the nucleotide sequence of the 5 end. These results, combined with the sequence of the 3 end of the gene, revealed that ptsG encodes a protein consisting of 699 amino acids and which is similar to other Enzymes II. The N-terminal domain contains two small additional fragments, which share no similarities with the closely related Enzymes IIGlc and IINag of E. coli but which are present in the IIG1c-like protein encoded by the E. coli malX gene.  相似文献   

6.
Our research group is studying the phosphotransferase system (PTS) of Streptomyces coelicolor, which, in other bacteria, is centrally involved in carbon source uptake and regulation. We have surveyed the public available S. coelicolor genome sequence produced by the ongoing genome sequencing project for pts gene homologues (http://www.sanger.ac.uk/Projects/S_coelicolor/). Three genes encoding homologues of the general PTS components enzyme I (ptsI), HPr (ptsH), and enzyme IIACrr (crr; IIAGlc-homologue) and six genes encoding homologues of sugar-specific PTS components were identified. The deduced primary sequences of the sugar-specific components shared significant similarities to PTS permeases of the mannitol/fructose family and of the glucose/sucrose family. A model is presented, in which possible functions of the novel described PTS homologues are discussed.  相似文献   

7.
Glucose was required for the transport of arabinose into Bifidobacterium breve. The non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) did not facilitate assimilation of arabinose. Studies using d-[U-14C]-labelled arabinose showed that it was fermented to pyruvate, formate, lactate and acetate, whereas the principal metabolic products of d-[U-14C]-labelled glucose were acetate and formate. In contrast to glucose, arabinose was not incorporated into cellular macromolecules. A variety of metabolic inhibitors and inhibitors of sugar transport (proton ionophores, metal ionophores, compounds associated with electron transport) were used to investigate the mechanisms of sugar uptake. Only NaF, an inhibitor of substrate level phosphorylation, and 2-DG inhibited glucose assimilation. 2-DG had no effect on arabinose uptake, but NaF was stimulatory. High levels of phosphorylation of glucose and 2-DG by PEP and to a lesser degree, ATP were seen in phosphoenolpyruvate: phosphotransferase (PEP:PTS) assays. These data together with strong inhibition of glucose uptake by NaF suggest a role for phosphorylation in the transport process. Arabinose uptake in B. breve was not directly dependent on phosphorylation or any other energy-linked form of transport but may be assimilated by glucose-dependent facilitated diffusion.Abbreviations (2,4-DNP) 2,4-dinitrophenol - (2,4-DNP) carbonylcyanide m-chlorophenylhydrazone - (CCCP) (phosphoenolpyruvate phosphotransferase system) - PEP: PTS trichloroacetic acid - (TCA) 2-deoxy-d-glucose - (2-DG) 2-deoxy-d-glucose  相似文献   

8.
Phosphoenolpyruvate (PEP)-dependent phosphorylation experiments have indicated that the grampositive bacteriumStaphylococcus carnosus possesses an EIICBA fusion protein specific for glucose. Here we report the cloning of a 7 kb genomic DNA fragment containing two genes,glcA andglcB, coding for the glucose-specific PTS transporters EIIGlc1 and EIIGlc2 which are 69% identical. The translation products derived from the nucleotide sequence consist of 675 and 692 amino acid residues and have calculated molecular weights of 73 025 and 75 256, respectively. Both genes can be stably maintained inEscherichia coli cells and restore the ability to ferment glucose toptsG deletion mutants ofE. coli. This demonstrates the ability of the PTS proteins HPr and/or EIIAGlc of a gram-negative organism (E. coli) to phosphorylate an EIICBAGlc from a gram-positive organism (S. carnosus).  相似文献   

9.
Summary The phosphoenolpyruvate-dependent sugar transport system (PTS) is present in a large variety of bacteria. It catalyzes transport and phosphorylation of hexoses and hexitols at the expense of phosphoenolpyruvate. Only three of four enzymes are required for this entire sequence. Each component has been isolated and purified to the homogeneity from one bacterial species or another allowing recent investigations intomechanistic aspects of energy coupling, energy conservation, transport and regulation using well-characterized enzymes. In each case the phosphorylation of the enzyme is a key element in that enzymes function.The initial step in the energy conversion process is the EI catalyzed conversion of phosphoenolpyruvate to pyruvate and P-HPr. EII is a metal requiring hydrophobic enzyme which is active only as a dimer. Kinetic and gel filtration data confirm that it forms functional ternary complexes with HPr or P-Hpr and phosphoenolpyruvate or pyruvate which influence both the degree of dimerization and the specific activity of the dimer. The dimer appears to carry only one phosphoryl group suggesting that negative cooperativity or a flip-flop mechanism may be involved in the sequence of phosphoryl group transfer.Many of the PTS phosphoenzyme intermediates carry the phosphoryl group as a phospho-histidine. A general mechanism for the transfer of the phosphoryl group to and from the active site histidine residue in each protein has been established with high resolution 1H NMR data. At physiological pH the active site histidine is deprotonated, whereas the phosphohistidine is protonated. Consequently the histidine, as a strong nucleophile, can abstract the phosphoryl group from the donor while protonation destabilizes the phosphohistidine facilitating passage of the phosphoryl group to the following enzyme intermediate. The change in protonation state accompanies a phosphorylation induced conformational change in the carrier.The ability of the PTS to regulate the activity of other permeases and catabolic enzymes has been attributed to EIII Glc. Data obtained with mutants suggest that changes in the phosphorylation state alter the regulatory properties of the enzyme. The nonphosphorylated species blocks various permeases and suppresses adenylate cyclase activity thereby inhibiting the synthesis of catabolic enzyme systems. The phosphorylated species stimulates adenylate cyclase and permits the uptake of inducers leading to the initiation of catabolic enzyme synthesis. Experiments with the isolated EIII Glc confirm that a phosphoenzyme intermediate exists.Transport and phosphorylation of the sugar are catalyzed by a membrane-bound EII via a phosphoenzyme intermediate which can be reached from P-HPr, P-EIII or sugar-P. The phosphorylation state controls the affinity of the enzyme for its substrates. EII is high affinity for P-HPr or P-EIII and low affinity for sugar. P-EII is high affinity for sugar and low affinity for P-HPr or P-EIII. The affinity of the enzyme for sugar substrates is controlled by the oxidation state of a dithiol. The reduced, dithiol form is high affinity for sugar substrates. The oxidized, disulfide form, is low affinity. Phosphorylation of the enzyme chould shift the affinity for substrates by altering the oxidation state of the enzyme.  相似文献   

10.
A consistent difference was found between glucose-limited cultures of Escherichia coli and Klebsiella aerogenes strains in the manner which their apparent cellular content of glucose: phosphoenolpyruvate phosphotransferase (glucose-PTS) varied with growth rate. With the former strains, activity increased as a function of growth rate; in the latter it decreased. However, under glucose-sufficient conditions (potassium-or ammonia-limitation) both species behaved similarly; the glucose-PTS activity was lower and bore no obvious relationship to the rate of glucose consumption expressed by the growing culture. These results are discussed in relation to the role of glucose as a regulator of glucose-PTS synthesis, and to the likely contribution which the glucose-PTS makes to the overall rate of glucose uptake, particularly by cells growing in glucose-sufficient environments.Abbreviation Glucose-PTS phosphoenolpyruvate phosphotransferase From May to November 1978 on study leave in the University of Amsterdam  相似文献   

11.
Pediococcus halophilus possesses phosphoenolpyruvate:mannose phosphotransferase system (man:PTS) as a main glucose transporter. A man:PTS defective (man:PTSd) strain X-160 could, however, utilize glucose. A possible glucose-transport mechanism other than PTS was studied with the strain X-160 and its derivative, man:PTSd phosphofructokinase defective (PFK) strain M-13. Glucose uptake by X-160 at pH 5.5 was inhibited by any of carbonylcyanide m-chlorophenylhydrazone, nigericin, N,N-dicyclohexylcarbodiimide, or iodoacetic acid. The double mutant M-13 could still transport glucose and accumulated intracellularly a large amount of hexose-phosphates (ca. 8 mM glucose 6-phosphate and ca. 2 mM fructose 6-phosphate). Protonophores also inhibited the glucose transport at pH 5.5, as determined by the amounts of accumulated hexose-phosphates (< 4 mM). These showed involvement of proton motive force (P) in the non-PTS glucose transport. It was concluded that the non-PTS glucose transporter operated in concert with hexokinase or glucokinase for the metabolism of glucose in the man:PTSd strain.Abbreviations BM basal medium - BM-G basal medium containing glucose - CM complex medium - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - P proton motive force - pH transmembrane pH gradient - transmembrane electrical potential difference - MNNG N-methyl-N-nitro-N-nitrosoguanidine - PIPES piperazine-N,N-bis(-ethanesulfonic acid) - MES 4-morpholineethanesulfonic acid - G-6-P glucose 6-phosphate - F-6-P fructose 6-phosphate - FDP fructose 1,6-bisphosphate - EMP Embden-Meyerhof-Parnas pathway - PFK phosphofructokinase - GK glucokinase - HK hexokinase - IAA iodoacetic acid - IIman enzyme II component of man:PTS  相似文献   

12.
Kim YJ  Ryu Y  Koo BM  Lee NY  Chun SJ  Park SJ  Lee KH  Seok YJ 《FEBS letters》2010,584(22):4537-4544
Vibrio vulnificus is an opportunistic human pathogen that causes severe infections in susceptible individuals. While the components of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system (PTS) have been shown to regulate numerous targets, little such information is available for the V. vulnificus PTS. Here we show that enzyme IIAGlc of the PTS regulates the peptidase activity of a mammalian insulysin homolog in V. vulnificus. While interaction of IIAGlc with the insulysin homolog is independent of the phosphorylation state of IIAGlc, only unphosphorylated IIAGlc activates the insulysin homolog. Taken together, our results suggest that the V. vulnificus insulysin-IIAGlc complex plays a role in survival in the host by sensing glucose.

Structured summary

MINT-8045996: IIA glu (uniprotkb:Q7MBY2) binds (MI:0407) to vIDE (uniprotkb:Q7MIS6) by pull down (MI:0096)MINT-8045817, MINT-8045967: IIA glu (uniprotkb:Q7MBY2) physically interacts (MI:0915) with vIDE (uniprotkb:Q7MIS6) by pull down (MI:0096)  相似文献   

13.
14.
The metabolism of trehalose in wild type cells of Escherichia coli and Salmonella typhimurium has been investigated. Intact cells of Escherichia coli (grown on trehalose) accumulated [14C]-trehalose as [14C]-trehalose 6-phosphate. Toluene-treated cells catalyzed the synthesis of the [14C]-sugar phosphate from [14C]-trehalose and phosphoenolpyruvate; ATP did not serve as phosphoryl donor. Trehalose 6-phosphate could subsequently be hydrolyzed by trehalose 6-phosphate hydrolase, an enzyme which catalyzes the hydrolysis of the disaccharide phosphate into glucose and glucose 6-phosphate. Both Escherichia coli and Salmonella typhimurium induced this enzyme when they grew on trehalose.These findings suggest that trehalose is transported in these bacteria by an inducible phosphoenolpyruvate:trehalose phosphotransferase system.The presence of a constitutive trehalase was also detected.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanosulfonic acid - PEP phosphoenolpyruvate - PTS phosphoenolpyruvate: glycose phosphotransferase system - O.D. optical density  相似文献   

15.
16.
Glucose is a universal energy source and a potent inducer of surface colonization for many microbial species. Highly efficient sugar assimilation pathways ensure successful competition for this preferred carbon source. One such pathway is the phosphoenolpyruvate phosphotransferase system (PTS), a multicomponent sugar transport system that phosphorylates the sugar as it enters the cell. Components required for transport of glucose through the PTS include enzyme I, histidine protein, enzyme IIAGlc, and enzyme IIBCGlc. In Escherichia coli, components of the PTS fulfill many regulatory roles, including regulation of nutrient scavenging and catabolism, chemotaxis, glycogen utilization, catabolite repression, and inducer exclusion. We previously observed that genes encoding the components of the Vibrio cholerae PTS were coregulated with the vps genes, which are required for synthesis of the biofilm matrix exopolysaccharide. In this work, we identify the PTS components required for transport of glucose and investigate the role of each of these components in regulation of biofilm formation. Our results establish a novel role for the phosphorylated form of enzyme I in specific regulation of biofilm-associated growth. As the PTS is highly conserved among bacteria, the enzyme I regulatory pathway may be relevant to a number of biofilm-based infections.  相似文献   

17.
In order to assess the functional significance of the quinoprotein glucose dehydrogenase recently found to be present in K+-limited Klebsiella aerogenes, a broad study was made of the influence of specific environmental conditions on the cellular content of this enzyme. Whereas high activities were manifest in cells from glucose containing chemostat cultures that were either potassium- or phosphate-limited, only low activities were apparent in cells from similar cultures that were either glucose-, sulphate- or ammonia-limited. With these latter two cultures, a marked increase in glucose dehydrogenase activity was observed when 2,4-dinitrophenol (1 mM end concentration) was added to the growth medium. These results suggested that the synthesis of glucose dehydrogenase is not regulated by the level of glucose in the growth medium, but possibly by conditions that imposed an energetic stress upon the cells. This conclusion was further supported by a subsequent finding that K+-limited cells that were growing on glycerol also synthesized substantial amounts of glucose dehydrogenase.The enzyme was found to be membrane associated, and preliminary evidence has been obtained that it is located on the periplasmic side of the cytoplasmic membrane and functionally linked to the respiratory chain. This structural and functional orientation is consistent with glucose dehydrogenase serving as a low impedance energy generating system.Abbreviations D dilution rate - DNP 2,4-dinitrophenol - PQQ 2,7,9-tricarboxy-1H-pyrrolo(2,3-f)quinoline-4,5-dione - PTS phosphoenolpyruvate: glucose phosphotransferase - WB Wurster's Blue  相似文献   

18.
The application of metabolic engineering in Escherichia coli has resulted in the generation of strains with the capacity to produce metabolites of commercial interest. Biotechnological processes with these engineered strains frequently employ culture media containing glucose as the carbon and energy source. In E. coli, the phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports glucose when this sugar is present at concentrations like those used in production fermentations. This protein system is involved in phosphoenolpyruvate-dependent sugar transport, therefore, its activity has an important impact on carbon flux distribution in the phosphoenolpyruvate and pyruvate nodes. Furthermore, PTS has a very important role in carbon catabolite repression. The properties of PTS impose metabolic and regulatory constraints that can hinder strain productivity. For this reason, PTS has been a target for modification with the purpose of strain improvement. In this review, PTS characteristics most relevant to strain performance and the different strategies of PTS modification for strain improvement are discussed. Functional replacement of PTS by alternative phosphoenolpyruvate-independent uptake and phosphorylation activities has resulted in significant improvements in product yield from glucose and productivity for several classes of metabolites. In addition, inactivation of PTS components has been applied successfully as a strategy to abolish carbon catabolite repression, resulting in E. coli strains that use more efficiently sugar mixtures, such as those obtained from lignocellulosic hydrolysates.  相似文献   

19.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

20.
Uncoupled enzyme IIGlc of the phosphoenolpyruvate (PEP):glucose phosphotransferase system (PTS) in Salmonella typhimurium is able to catalyze glucose transport in the absence of PEP-dependent phosphorylation. As a result of the ptsG mutation, the apparent Km of the system for glucose transport is increased about 1,000-fold (approximately 18 mM) compared with wild-type PTS-mediated glucose transport. An S. typhimurium mutant containing uncoupled enzyme IIGlc as the sole system for glucose uptake was grown in glucose-limited chemostat cultures. Selective pressure during growth in the chemostat resulted in adaptation to the glucose-limiting conditions in two different ways. At first, mutations appeared that led to a decrease in Km value of uncoupled enzyme IIGlc. These results suggested that uncoupled enzyme IIGlc had significant control on the growth rate under glucose-limiting conditions. More efficient glucose uptake enabled a mutant to outgrow its parent and caused a decrease in the steady-state glucose concentration in the chemostat. At very low glucose concentrations (10 microM), mutants arose that contained a constitutively synthesized methyl-beta-galactoside permease. Apparently, further changes in the uncoupled enzyme IIGlc did not lead to a substantial increase in growth rate at very low glucose concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号