首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R I Salganik 《Genetika》1987,23(6):1050-1063
The molecular mechanisms of generation of stress-induced genetic recombinations and point mutations are considered. Due to the oxidative, temperature, radiation and other forms of stress, intensive modification of DNA bases occurs. Excision of the modified bases (hypoxanthine, uracil, pyrimidine photoproducts, methylated purines) leads to the formation of single-stranded gaps in DNA. If one DNA strand is damaged, there is high probability of its primary structure being completely restored. When the rate of lesions increases, the DNA can be damaged in the gap-related opposite sites of both strands. It is shown that in this case, the excision repair leads to a burst of recombinations and point mutations which may be concerned with the mispairings, double-stranded breaks, induction of SOS-response. With the increase in the rate of lesions, the possibility of the damage in self-complementary DNA sequences is also enhanced. This leads to formation of hairpin structures in the single-stranded DNA stretches. It is demonstrated that in these cases the repair results in development of deletions, insertions and clusters of point mutations predetermined by the primary DNA structure. Independent means of stress-induced mutations' occurrence seem to be the transposable elements. The stress-induced outbreaks of recombinations provide conceivably new variants of genotypes to be selected for the adaptation to new extreme conditions.  相似文献   

2.
E Winters  B M Baroudy  B Moss 《Gene》1985,37(1-3):221-228
The genome of vaccinia virus is a linear duplex molecule of approximately 185 kb with hairpins at each end that link the complementary strands. The hairpins, which exist in two forms that are inverted and complementary in sequence, were isolated as XbaI restriction fragments and converted to a linear intermolecular duplex structure by denaturation and reannealing. The latter was then stably cloned as a 142-bp imperfect palindrome in an Escherichia coli plasmid. The insert was excised from the plasmid and the palindrome was extended on both sides by ligating it to the adjacent vaccinia virus DNA segment. The resulting fragment was cloned as a 278-bp imperfect palindrome. Restriction endonuclease analysis and DNA sequencing indicated the absence of any deletions or rearrangements. After excision from the plasmid, the palindrome was converted by heating and rapid cooling to the original two hairpin forms. In this manner, large quantities of vaccinia virus telomeres may be obtained for physical and biochemical studies.  相似文献   

3.
Cheung AK 《Journal of virology》2004,78(17):9016-9029
Palindromic sequences (inverted repeats) flanking the origin of DNA replication with the potential of forming single-stranded stem-loop cruciform structures have been reported to be essential for replication of the circular genomes of many prokaryotic and eukaryotic systems. In this study, mutant genomes of porcine circovirus with deletions in the origin-flanking palindrome and incapable of forming any cruciform structures invariably yielded progeny viruses containing longer and more stable palindromes. These results suggest that origin-flanking palindromes are essential for termination but not for initiation of DNA replication. Detection of template strand switching in the middle of an inverted repeat strand among the progeny viruses demonstrated that both the minus genome and a corresponding palindromic strand served as templates simultaneously during DNA biosynthesis and supports the recently proposed rolling-circle "melting-pot" replication model. The genome configuration presented by this model, a four-stranded tertiary structure, provides insights into the mechanisms of DNA replication, inverted repeat correction (or conversion), and illegitimate recombination of any circular DNA molecule with an origin-flanking palindrome.  相似文献   

4.
A self-complementary nucleotide sequence can form both a unimolecular hairpin and a bimolecular duplex. In this study, the secondary structures of the self-complementary DNA and RNA oligonucleotides with different sequences and lengths were investigated under various solution conditions by gel electrophoresis, circular dichroism (CD) and electron paramagnetic resonance (EPR) spectroscopy and a ultraviolet (UV) melting analysis. The DNA sequences tended to adopt a hairpin conformation at low cation concentrations, but a bimolecular duplex was preferentially formed at an elevated cationic strength. On the other hand, fully matched RNA sequences adopted a bimolecular duplex regardless of the cation concentration. The thermal melting experiments indicated a greater change in the melting temperature of the bimolecular duplexes (by ~20°C) than that of the hairpin (by ~10°C) by increasing the NaCl concentration from 10 mM to 1 M. Hairpin formations were also observed for the palindrome DNA sequences derived from Escherichia coli, but association of the complementary palindrome sequences was observed when spermine, one of the major cationic molecules in a cell, existed at the physiological concentration. The results indicate the role of cations for shifting the structural equilibrium toward a nucleotide assembly and implicate nucleotide structures in cells.  相似文献   

5.
6.
In vivo excision and amplification of large segments of a genome offer an alternative to heterologous DNA cloning. By obtaining predetermined fragments of the chromosome directly from the original organism, the problems of clone stability and clone identification are alleviated. This approach involves the insertion of two recognition sequences for a site-specific recombinase into the genome at predetermined sites, 50-100 kb apart. The integration of these sequences, together with a conditional replication origin (ori), is targeted by homologous recombination. The strain carrying the insertions is stably maintained until, upon induction of specifically engineered genes, the host cell expresses the site-specific recombinase and an ori-specific replication protein. The recombinase then excises and circularizes the genomic segment flanked by the two insertions. This excised DNA, which contains ori, is amplified with the aid of the replication protein and can be isolated as a large plasmid. The feasibility of such an approach is demonstrated here for E. coli. Using the yeast FLP/FRT site-specific recombination system and the pi/gamma-ori replication initiation of plasmid R6K, we have devised a procedure that should allow the isolation of virtually any segment of the E. coli genome. This was shown by excising, amplifying and isolating the 51-kb lacZ--phoB and the 110-kb dapX--dsdC region of the E. coli MG1655 genome.  相似文献   

7.
Lu LY  Huen MS  Tai AC  Liu DP  Cheah KS  Huang JD 《BioTechniques》2008,44(2):217-20, 222, 224
The lamda phage Red recombination system has been used to modify plasmid, bacterial artificial chromosome (BAC), and chromosomal DNA in a highly precise and versatile manner Linear double-stranded DNA fragments or synthetic single-stranded oligonucleotides (SSOs) with short flanking homologies (<50 bp) to the target loci can be used as substrates to direct changes, including point mutations, insertions, and deletions. In attempts to explore mechanistic bases under this recombination process, we and others have previously identified factors that influence SSO-mediated single base substitutions. In this report, we focus our study on SSO-mediated deletion on plasmids. We found that SSOs as short as 63 bp were sufficient to mediate deletion as long as 2 kb with efficiency higher than 1%. Strand bias was consistently observed, and SSOs with sequences identical to the nascent lagging strand during replication always resulted in higher efficiency. Unlike SSO-mediated single nucleotide substitution, homology on each side of SSO flanking the fragment to be deleted was important for successful deletion, and abolishing the host methyl-directed mismatch repair (MMR) system did not lead to detectable changes in deletion efficiency. Finally, we showed that by optimizing its design, SSO-mediated deletion was efficient enough to make it possible to manipulate plasmids without selectable markers.  相似文献   

8.
Butler DK  Gillespie D  Steele B 《Genetics》2002,161(3):1065-1075
Large DNA palindromes form sporadically in many eukaryotic and prokaryotic genomes and are often associated with amplified genes. The presence of a short inverted repeat sequence near a DNA double-strand break has been implicated in the formation of large palindromes in a variety of organisms. Previously we have established that in Saccharomyces cerevisiae a linear DNA palindrome is efficiently formed from a single-copy circular plasmid when a DNA double-strand break is introduced next to a short inverted repeat sequence. In this study we address whether the linear palindromes form by an intermolecular reaction (that is, a reaction between two identical fragments in a head-to-head arrangement) or by an unusual intramolecular reaction, as it apparently does in other examples of palindrome formation. Our evidence supports a model in which palindromes are primarily formed by an intermolecular reaction involving homologous recombination of short inverted repeat sequences. We have also extended our investigation into the requirement for DNA double-strand break repair genes in palindrome formation. We have found that a deletion of the RAD52 gene significantly reduces palindrome formation by intermolecular recombination and that deletions of two other genes in the RAD52-epistasis group (RAD51 and MRE11) have little or no effect on palindrome formation. In addition, palindrome formation is dramatically reduced by a deletion of the nucleotide excision repair gene RAD1.  相似文献   

9.
Genes can be mutated by altering DNA content (base changes) or DNA length (insertions or deletions). Most in vitro directed evolution processes utilize nucleotide content changes to produce DNA libraries. We tested whether gain of function mutations could be identified using a mutagenic process that produced only nucleotide deletions. Short nucleotide stretches were deleted in a plasmid encoding lacZ, and screened for increased beta-galactosidase activity. Several mutations were found in the origin of replication that quantitatively and qualitatively altered plasmid behavior in vivo. Some mutations allowed co-residence of ColE1 plasmids in Escherichia coli, and implicate hairpin structures II and III of the ColE1 RNA primer as determinants of plasmid compatibility. Thus, useful and unexpected mutations can be found from libraries containing only deletions.  相似文献   

10.
Escherichia coli generalized recombination, utilizing the RecA RecB recombination pathway, requires large stretches (70-200 bp) of complete DNA sequence homology. In contrast, we have found that the RecE pathway can promote recombination between DNA with only short stretches of homology. A plasmid containing 10 partially homologous direct repeats was linearized by digestion with specific restriction enzymes. After transformation, a RecE+ (sbcA) host was able to circularize the plasmid by recombination between partially homologous direct repeat sequences. Recombination occurred in regions of as little as 6 bp of perfect homology. Recombination was enhanced in the regions adjacent to restriction sites used to linearize the plasmid, consistent with a role of double-strand breaks in promoting recombination. A mechanism is proposed in which the 5' exonuclease, ExoVIII, produces 3' single-stranded ends from the linearized plasmid. These pair with other sequences of partial homology. Partial homologies in the sequences flanking the actual join serve to stabilize this recombination intermediate. Recombination is completed by a process of "copy and join." This recombination mechanism requires less homology to stabilize intermediates than the degree of homology needed for mechanisms involving strand invasion. Its role in nature may be to increase genomic diversity, for example, by enhancing recombination between bacteriophages and regions of the bacterial chromosome.  相似文献   

11.
A proteolytic fragment of recA protein, missing about 15% of the protein at the C terminus, was found to promote assimilation of homologous single-stranded DNA into duplex DNA more efficiently than intact recA protein. This difference was not found if Escherichia coli single-stranded DNA binding protein was present. The ATPase activity of both intact recA protein and the fragment was identical. The difference in strand assimilation activity cannot be due to differences in single-stranded DNA affinity, since both the fragment and intact proteins bind to single-stranded DNA with nearly identical affinities. However, the fragment was found to bind double-stranded DNA more tightly and to aggregate more extensively than recA protein; both of these properties may be important in strand assimilation. Aggregation of the fragment was extensive in the presence of duplex DNA under the same condition where recA protein did not aggregate. The double-stranded DNA binding of both recA protein and the fragment responds to nucleotide cofactors in the same manner as single-stranded DNA binding, i.e. ADP weakens and ATP gamma S strengthens the association. The missing C-terminal region of recA protein includes a very acidic region that is homologous to other single-stranded DNA binding proteins and which has been implicated in DNA binding modulation. This C-terminal region may serve a similar function in recA protein, possibly inhibiting double-stranded DNA invasion. The possible role of the enhanced double-stranded DNA affinity of the fragment protein in the mechanism of strand assimilation is discussed.  相似文献   

12.
In Escherichia coli, bulky DNA lesions are repaired primarily by nucleotide excision repair (NER). Unrepaired lesions encountered by DNA polymerase at the replication fork create a blockage which may be relieved through RecF-dependent recombination. We have designed an assay to monitor the different mechanisms through which a DNA polymerase blocked by a single AAF lesion may be rescued by homologous double-stranded DNA sequences. Monomodified single-stranded plasmids exhibit low survival in non-SOS induced E. coli cells; we show here that the presence of a homologous sequence enhances the survival of the damaged plasmid more than 10-fold in a RecA-dependent way. Remarkably, in an NER proficient strain, 80% of the surviving colonies result from the UvrA-dependent repair of the AAF lesion in a mechanism absolutely requiring RecA and RecF activity, while the remaining 20% of the surviving colonies result from homologous recombination mechanisms. These results uncover a novel mechanism - RecA-mediated excision repair - in which RecA-dependent pairing of the mono-modified single-stranded template with a complementary sequence allows its repair by the UvrABC excinuclease.  相似文献   

13.
Double strand DNA breaks in plants are primarily repaired via non-homologous end joining. However, little is known about the molecular events underlying this process. We have studied non-homologous end joining of linearized plasmid DNA with different termini configurations following transformation into tobacco cells. A variety of sequences were found at novel end junctions. Joining with no sequence alterations was rare. In most cases, deletions were found at both ends, and rejoining usually occurred at short repeats. A distinct feature of plant junctions was the presence of relatively large, up to 1.2 kb long, insertions (filler DNA), in approximately 30% of the analyzed clones. The filler DNA originated either from internal regions of the plasmid or from tobacco genomic DNA. Some insertions had a complex structure consisting of several reshuffled plasmid-related regions. These data suggest that double strand break repair in plants involves extensive end degradation, DNA synthesis following invasion of ectopic templates and multiple template switches. Such a mechanism is reminiscent of the synthesis-dependent recombination in bacteriophage T4. It can also explain the frequent 'DNA scrambling' associated with illegitimate recombination in plants.  相似文献   

14.
Rong R  Slupska MM  Chiang JH  Miller JH 《Gene》2004,336(1):73-80
An effective DNA replacement system has been established for engineering large fragment insertions into the chromosome of Escherichia coli. The DNA replacement plasmid, pHybrid I, was first constructed based on the bacterial artificial chromosome (BAC) vector. Two fragments of the E. coli genome, 5.5 and 6.5 kb in length, were introduced into the vector for homologous recombination. In addition to the chloramphenicol gene, a second gene neo was introduced for double marker screening for recombinant clones. By shot-gun cloning and homologous recombination techniques, using our new recombinant vector (pHybrid I), a 20-kb fragment from Lactococcus lactis genomic DNA has been successfully integrated into the chromosome of the E. coli strain J93-140. Plating tests and PCR amplification indicated that the integration remained stable after many generations in cell culture. This system will be especially useful for the chromosome engineering of large heterologous fragment insertions, which is necessary for pathway engineering.  相似文献   

15.
K. Weston-Hafer  D. E. Berg 《Genetics》1991,127(4):649-655
We test here whether a class of deletions likely to result from errors during DNA replication arise preferentially during synthesis of either the leading or the lagging DNA strand. Deletions were obtained by reversion of particular insertion mutant alleles of the pBR322 amp gene. The alleles contain insertions of palindromic DNAs bracketed by 9-bp direct repeats of amp sequence; in addition, bp 2 to 5 in one arm of the palindrome form a direct repeat with 4 bp of adjoining amp sequence. Prior work had shown that reversion to Ampr results from deletions with endpoints in the 8- or 4-bp repeat, and that the 4-bp repeats are used preferentially because one of them is in the palindrome. To test the role of leading and lagging strand synthesis in deletion formation, we reversed the direction of replication of the amp gene by inverting the pBR322 replication origin, and also constructed new mutant alleles with a 4-bp repeat starting counterclockwise rather than clockwise of the insertion. In both cases the 4-bp repeats were used preferentially as deletion endpoints. A model is presented in which deletions arise during elongation of the strand that copies the palindrome before the adjoining 4-bp repeat, and in which preferential use of the 4-bp repeats independent of the overall direction of replication implies that deletions arise during syntheses of both leading and lagging strands.  相似文献   

16.
The vaccinia virus DNA telomere, which contains a covalently closed hairpin structure, has been cloned in a yeast plasmid vector. Restriction mapping indicates that the cloned vaccinia telomere is maintained in yeast not in its native hairpin configuration but as an inverted repeat structure, within a circular plasmid, with the sequences of the viral hairpin now at the axis of symmetry of an imperfect palindrome. As such, the cloned telomere resembles the telomeric replicative intermediate observed during vaccinia virus DNA replication. Small deletions and duplications in the viral inverted repeats of different clones suggest a model in which the observed circular plasmids were generated in yeast by the replication of hybrid linear DNA molecules consisting of the linearized yeast vector flanked by two hairpin-containing vaccinia termini.  相似文献   

17.
DNA palindromes are hotspots for DNA double strand breaks, inverted duplications and intra-chromosomal translocations in a wide spectrum of organisms from bacteria to humans. These reactions are mediated by DNA secondary structures such as hairpins and cruciforms. In order to further investigate the pathways of formation and cleavage of these structures, we have compared the processing of a 460 base pair (bp) perfect palindrome in the Escherichia coli chromosome with the same construct interrupted by a 20 bp spacer to form a 480 bp interrupted palindrome. We show here that the perfect palindrome can form hairpin DNA structures on the templates of the leading- and lagging-strands in a replication-dependent reaction. In the presence of the hairpin endonuclease SbcCD, both copies of the replicated chromosome containing the perfect palindrome are cleaved, resulting in the formation of an unrepairable DNA double-strand break and cell death. This contrasts with the interrupted palindrome, which forms a hairpin on the lagging-strand template that is processed to form breaks, which can be repaired by homologous recombination.  相似文献   

18.
A new method of discrimination of double-stranded (ds) and single-stranded (ss) regions in DNA molecules has been developed. It makes use of two alkylating reagents, a voluminous and a small-sized, the former being sensitive to the DNA conformation. A bulky reagent, N,N,N'-tri(beta-chloroethyl)-N'-(p-formylphenyl) propylendiamine-1,3 (TFP), was used to detect the hairpin structure in the palindrome-containing DNA fragment 373 nucleotides long prepared from the ds EcoRI-BamHI fragment of the plasmid pBR322. The fragment was modified by TFP and cleaved by piperidine at the alkylated guanine residues according to the Maxam-Gilbert procedure. Guanine residues in the hairpin formed by palindrome were protected from the TFP action, while dimethylsulfate modified all guanines. Application of the method for the identification of loops, stem-and-loop structures, and unwinded regions of DNA is discussed.  相似文献   

19.
《Gene》1996,170(1):45-50
Repair of a double-strand break (DSB) was investigated by intermolecular recombination in Escherichia coli (Ec) recBC sbcBC cells with restriction enzyme-cleaved model plasmids. Circular plasmids were generated when a linearized plasmid (vector) containing an origin of replication was co-transformed with a DNA fragment (template) containing a homologous sequence. The influence of the position of the DSB in the vector was analyzed using templates which contain various genetic markers, non-homologous sequences and/or deletions relative to the vector. In all cases, when a DSB occurs within a marker, this marker is lost in the resulting plasmid, whereas markers flanked by homologous regions located in the vicinity of a DSB are transmitted. Insertions (deletions), substitutions and shuffling of genetic markers are possible by in vivo recombination using Ec and can be applied to plasmid constructions. It is shown that recombination can occur from both template ends or from one vector and one template end. A D-loop nuclease is suggested to participate in the resolution of the recombination intermediates  相似文献   

20.
The nature of specific DNA sequences that arrest synthesis by mammalian DNA polymerase alpha in vitro was analyzed using circular, single-stranded M13 or phi X174 virion DNA templates annealed to a unique, terminally labeled, DNA primer. This method rigorously defined both the starting nucleotide position and the direction of synthesis, as well as making the amount of radioactivity proportional to the number rather than the length of nascent DNA chains. The precise nucleotide locations of arrest sites were determined over templates with complementary sequences by cloning unique DNA restriction fragments into M13 DNA and isolating virions containing either the Watson or Crick strand. Results were correlated with the locations of palindromic (self-complementary) sequences, repeated sequences, and repeated sequences with mirror-image orientation. Two classes of DNA synthesis arrest sites were identified, distinct in structure but equivalent in activity. Class I sites consisted of palindromic sequences that formed a stable hairpin structure in solution and arrested DNA polymerase on both complementary templates. The polymerase stopped precisely at the base of the duplex DNA stem, regardless of the direction from which the enzyme approached. Class II sites consisted of non-palindromic sequences that could not be explained by either secondary structure or sequence symmetry elements, and whose complementary sequence was not an arrest site. Size limits, orientation and some sequence specificity for arrest sites were suggested by the data. Arrest sites were also observed in vivo by mapping the locations of 3'-end-labeled nascent simian virus 40 DNA strands throughout the genome. Arrest sites closest to the region where termination of replication occurs were most pronounced, and the locations of 80% of the most prominent sites appeared to be recognized by alpha-polymerase on the same template in vitro. However, class I sites were not identified in vivo, suggesting that palindromic sequences do not form hairpin structures at replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号