首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed the influence of environmental stress (mainly deforestation of catchment due to windstorm) on taxonomic structure as well as composition of functional groups (FG) based on zonation preferences and feeding types of caddisfly species in 11 streams (12 sites) with various environmental conditions situated in the High Tatra Mts, Slovakia. Using Spearman correlation, we confirmed an expected positive association between taxonomic and functional groups richness (Ri), diversity (Shannon — Wiener Index) (Di) and equitability (Eq), but not with habitat diversity (HQA indices). By testing measured physiographical, physico-chemical and hydromorphological factors using CCA analysis we found that stream order and temperature best explained the functional and taxonomic structure of caddisfly assemblages. The occurrence of Rhyacophila glareosa decreased with increasing daily mean water temperature positively correlated with deforestation, whereas R. tristis (dominating at sites most affected by erosion) showed the opposite pattern. Composition of functional groups based on zonation preferences and feeding types distinguished well near natural sites from impacted ones, dominated by crenal/rhithral predators, and explained more of the overall variance of the species-environment relationships than taxonomic composition of caddisfly assemblages.  相似文献   

2.
Hydrobiological research of high mountain streams in the High Tatras was carried out in 2009–2010. We evaluated the influence of windstorm on caddisfly assemblages. To assess the influence of windstorm we focused on river morphology using the RHS method and evaluation of TAM, TOM and BOM (CPOM, FPOM, UFPOM) amount in seven streams. Site 1 was a control and the other six were disturbed by the windstorm in different ways. The most remarkable differences compared to the control site was in feeding structure at sites most affected by erosion. In these streams there was a noticeable dominance of predators from the family Rhyacophilidae (mainly Rhyacophila tristis; sites 3, 4, 5, 6) and a remarkable decrease of passive filter feeders (site 4, 5). Using Spearman coefficient we confirmed a positive correlation between the proportion of predators and amount of TAM caused by erosion of steep deforested slopes of windstorm affected sites. In contrast, we did not observe such an increase in the proportion of predators at site 7, which was affected by both windstorm and subsequently by fire. This might be explained by the shallow vee valley with no observed erosion, where this site is situated. We also found a negative correlation between predators and evenness, indicating unstable community structure clearing succesion in the streams disturbed by erosion, and a negative correlation between passive filter feeders and UFPOM. We found out that overhanging tree boughs and LWD had an influence on species composition. RHS was a useful tool in characterising the influence of hydromorphology on caddisfly assemblages.  相似文献   

3.
1. Rainforest streams in eastern Madagascar have species‐rich and diverse endemic insect communities, while streams in deforested areas have relatively depauperate assemblages dominated by collector‐gatherer taxa. We sampled a suite of benthic insects and their food resources in three primary rainforest streams within Ranomafana National Park in eastern Madagascar and three agriculture streams in the park's deforested peripheral zone. We analysed gut contents and combined biomass and stable isotope data to examine stream community responses to deforestation in the region, which is a threatened and globally important hotspot for freshwater biodiversity. 2. Gut analyses showed that most taxa depended largely on amorphous detritus, obtained either from biofilms (collector‐gatherers) or from seston (microfilterers). Despite different resource availability in forest versus agriculture streams, diets of each taxon did not differ between stream types, suggesting inflexible feeding modes. Carbon sources for forest stream insects were difficult to discern using δ13C. However, in agriculture streams dependence on terrestrial carbon sources was low relative to algal sources. Most insect taxa with δ13C similar to terrestrial carbon sources (e.g. the stonefly Madenemura, the caddisfly Chimarra sp. and Simulium blackflies) were absent or present at lower biomass in agriculture streams relative to forest streams. Conversely, collector‐gatherers (Afroptilum mayflies) relied on algal carbon sources and had much higher biomass in agriculture streams. 3. Our analyses indicate that a few collector‐gatherer species (mostly Ephemeroptera) can take advantage of increased primary production in biofilms and consequently dominate biomass in streams affected by deforestation. In contrast, many forest stream insects (especially those in the orders Plecoptera, Trichoptera and Diptera) depend on terrestrial carbon sources (i.e. seston and leaf litter), are unable to track resource availability and consequently decline in streams draining deforested landscapes. These forest‐specialists are often micro‐endemic and particularly vulnerable to deforestation. 4. The use of consumer biomass data in stable isotope research can help detect population‐level responses to shifts in basal resources caused by anthropogenic change. We also suggest that restoration of vegetated riparian zones in eastern Madagascar and elsewhere could mitigate the deleterious effects of deforestation on sensitive, endemic stream taxa that are dependent on terrestrial carbon sources.  相似文献   

4.
The growth of aquatic insects in a small mountain stream was studied with emphasis on water temperature. Growth of the five dominant species was examined in relation to degree-days. This measure accounts for time and the minimum temperature necessary for insect growth. All species showed reduced specific growth rates with lower temperatures, but some (Ephemerella dorothea, Leuctra tenella, Neumoura wui) did not stop growing at even the lowest water temperatures. Both Diplectrona modesta and Paraleptophlebia assimilis had minimum growth temperatures. Studies demonstrated that the growth of stream insects is directly proportional to the number of degree-days experienced by a population.  相似文献   

5.
Nutrient recycling by consumers in streams can influence ecosystem nutrient availability and the assemblage and growth of photoautotrophs. Stream fishes can play a large role in nutrient recycling, but contributions by other vertebrates to overall recycling rates remain poorly studied. In tributaries of the Pacific Northwest, coastal giant salamanders (Dicamptodon tenebrosus) occur at high densities alongside steelhead trout (Oncorhynchus mykiss) and are top aquatic predators. We surveyed the density and body size distributions of D. tenebrosus and O. mykiss in a California tributary stream, combined with a field study to determine mass-specific excretion rates of ammonium (N) and total dissolved phosphorus (P) for D. tenebrosus. We estimated O. mykiss excretion rates (N, P) by bioenergetics using field-collected data on the nutrient composition of O. mykiss diets from the same system. Despite lower abundance, D. tenebrosus biomass was 2.5 times higher than O. mykiss. Mass-specific excretion summed over 170 m of stream revealed that O. mykiss recycle 1.7 times more N, and 1.2 times more P than D. tenebrosus, and had a higher N:P ratio (8.7) than that of D. tenebrosus (6.0), or the two species combined (7.5). Through simulated trade-offs in biomass, we estimate that shifts from salamander biomass toward fish biomass have the potential to ease nutrient limitation in forested tributary streams. These results suggest that natural and anthropogenic heterogeneity in the relative abundance of these vertebrates and variation in the uptake rates across river networks can affect broad-scale patterns of nutrient limitation.  相似文献   

6.
In this study we describe how the river morphology of seven High Tatras streams has been influenced in different ways by a severe windstorm that occurred in November 2004. A control site situated in an undisturbed area is compared with six sites in windstorm damaged areas. In 2009–2010 River Habitat Survey (RHS) was used to assess the character of 500 m lengths of stream and to derive associated morphological indices (HQA, HMS sensu Raven 1998, RHS indices sensu Vaughan 2010). Large amounts of large woody debris in the channel influenced the streams despite most of it having been removed after the windstorm. Streams situated in deforested valley slopes were probably more affected by erosion; they had higher amounts of transported inorganic matter and also depositional bar features. Some changes in land-use had occurred with streams situated on the south-east side of the High Tatras having a more uniform banktop vegetation structure than the other streams. Distinct secondary succession of bank top vegetation was observed along windstorm influenced streams. The highest percentage of shrubs occurred where impacted streams remained untouched. Morphologically, the streams most affected by windstorm are those situated in deforested steep valley slopes that are affected by erosion and siltation.  相似文献   

7.
The environmental conditions governing symbioses are poorly known in aquatic systems. Stream conditions associated with the distribution of the black fly (Simuliidae) midgut symbiote Harpella were investigated in southern Alabama and Mississippi streams. Stream conditions that were most useful in predicting the distribution of Harpella spp. in the study area were dissolved oxygen and water temperature. Presence of Harpella species in streams was associated with higher dissolved oxygen and decreased water temperature compared to streams where Harpella spp. was absent. Stream conditions associated with the distribution of Harpella spp. in other regions of the world vary according to conditions other than those elucidated here, indicating that geography, host species, and stream conditions play important roles in the spatial distribution of Harpella species.  相似文献   

8.
The effects of temperature and nutrient availability on seasonal abundance were compared among Sargassum berberifolium J. Ag., S. polycystum C. Ag., S. siliquosum J. Ag., and S. sandei from a reef in southern Taiwan. Growth temperature limits and optimum were variable between species and between developmental stages. Growth temperature ranges agree with Sargassum periodicity except S. sandei. Sargassum siliquosum can tolerate high temperature as indicated by higher optimum temperature and tolerance limits. Temporal changes in tissue nutrient content and alkaline phosphatase activity and the results from nutrient enrichment bioassay show that S. sandei, S. berberifolium, and S. polycystum are P limited in the early growth period and then N limited, whereas S. siliquosum showed a contrasting trend, reflecting the type of nutrient limitation is variable by time and between species. A smaller nutrient threshold for maximum growth in S. berberifolium, S. polycystum, and S. siliquosum than in S. sandei and higher growth rate in S. berberifolium and S. polycystum indicate the higher growth vigor and nutrient utilization efficiency, the higher abundance. High N reserves in S. berberifolium and S. polycystum exposed to elevated seawater N in the early growth period supported the subsequent growth. The multiple regression analysis indicates that percent cover of S. siliquosum increased with increasing water temperature and dissolved inorganic nitrogen concentrations, whereas that of S. polycystum decreased with increasing water temperature. In conclusion, seasonal dynamics of Sargassum spp. from southern Taiwan are attributable to species and temporal variations in temperature limitation and nutrient utilization strategy.  相似文献   

9.
Controls on periphyton biomass in heterotrophic streams   总被引:1,自引:0,他引:1  
1. Headwater streams of the Hubbard Brook Experimental Forest (HBEF) are typically characterised by a periphyton assemblage of low biomass and diversity. However, periphyton blooms have been observed following catchment deforestation experiments and occasionally during the annual spring thaw before canopy leaf‐out. 2. There is pronounced seasonal variation in both nutrient and light availability in HBEF streams. Stream water nitrogen (N) concentrations and light levels are higher before canopy leaf‐out and after leaf senescence and are lower during the growing season. Periphyton accrual rates also change seasonally; they are highest in spring prior to leaf‐out and significantly lower during summer and in autumn. 3. Periphyton biomass rarely responded positively to in‐situ experimental enrichment with nitrogen or phosphorus. In the summer, nutrient enrichment overall had no effect on periphyton biomass, while outside the growing season N enrichment had inhibitory effects on periphyton. 4. Despite these experimental results, surveys of ambient chlorophyll a concentrations in streams across the HBEF demonstrated no relationship between streamwater dissolved inorganic N or P concentrations and benthic chlorophyll a. 5. Our results suggest that HBEF periphyton communities are not closely regulated by nutrient availability, even during periods of high light availability. The inhibitory effects of nutrient enrichment outside the growing season are interesting, but further research is necessary to elucidate the mechanisms driving these responses.  相似文献   

10.
The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient‐poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N‐ and P‐excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year‐round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic‐terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.  相似文献   

11.
A synoptic study of acidified mountain streams covering six Czech sites was performed. The aim was to provide biological data from small mountain streams in catchments with historically high acid atmospheric deposition, which have so far been subject of intensive long-term monitoring of hydrology and hydrochemistry only, in order to follow the development of the structure of benthic macroinvertebrates in the course of recovery from acidification. We focused on small headwater streams with minimum human influence in the catchment and relatively low concentrations of dissolved organic matter. The sites were classified according to their water pH status: three of them were strongly acidified (pH 4.07–4.57, concentration of reactive aluminium R-Al 448–1913 μg L?1), two were moderately acidified (pH 5.08–6.38, R-Al 52–261 μg L?1) and one non-acidified (pH 7.63–7.89, R-Al 12–59 μg L?1). The largest biotic difference detected by PCA was in the presence of the caddisflies Drusus, Rhyacophila, and Chaetopteryx villosa and stoneflies Leuctra pseudocingulata and Diura bicaudata. The results indicate that at the most acidified sites (the Lysina and the right branch of the Litavka), the process of biological recovery has not started yet due to an insufficient increase in stream pH. Indeed, MAGIC modelling published earlier shows that significant increases cannot be expected in the following decades. An average pH of at least 4.5 is needed for return of less acid-tolerant taxa such as Diura bicaudata, Leuctra major, L. pseudocingulata, L. pseudosignifera, Drusus or Rhyacophila. However, at the Sklá?ský potok — Jizerka site,^both the clear-cut of mature spruce plantations in 1984–1990 and the regional drop in SO2 emissions in the 1990s resulted in a decline of acid deposition and rising streamwater pH. Mean annual pH at the Sklá?ský potok — Jizerka outlet increased from 4.0 (1982–1985) to 5.3 (1990–1994), but episodic acidification has still resulted in a delay in recovery of the biota, particularly acid-sensitive species, which may be expected within a couple decades.  相似文献   

12.
Nutrient recycling is an essential ecosystem process provided by animals. In many aquatic systems, fish have been identified as important in ecosystem nutrient recycling; however, this importance can vary widely between systems. The factors controlling intersystem variation in animal‐mediated nutrient cycling have rarely been examined and as such it remains unclear what impact human landscape changes will have upon these processes. Here we examined rates of nutrient recycling for temperate stream fish assemblages along a gradient of agricultural land use (proportion cropland in the watershed: 1–59%). We quantified nutrient excretion rates of both ammonium–N (NH4+–N) and phosphate (as soluble reactive phosphate: SRP) for fish assemblages at eight streams in southern Ontario, Canada with species‐specific excretion measurements and quantitative assemblage sampling. For both nutrients, total assemblage excretion exhibited a strong positive relationship with riparian cropland. The distance required for fish assemblages to turn over ambient nutrient pools was shorter for cropland systems, indicating that the relative importance of excreted nutrients was higher in these systems. Based on measured uptake rates of NH4+–N in two streams (one higher cropland and one low cropland) and on modeled uptake rates for all streams, the proportion of ecosystem demand that can be satisfied by excretion is generally higher in the more agricultural streams. These patterns appear to be driven largely by disproportionate increases in fish assemblage biomass with increasing stream nutrient concentrations.  相似文献   

13.
1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first‐order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first‐order catchments. The large‐scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site. 5. Our results show that loss of genetic diversity in this widespread aquatic insect species is co‐occurring with deforestation of headwater streams. 6. Most arguments supporting protection of headwater streams in the United States have centred on the role of these streams as hydrological and biogeochemical conduits to downstream waters. Our work suggests that headwater stream land use, and specifically tree cover, may have a role in the maintenance of regional genetic diversity in some common aquatic insect species.  相似文献   

14.
1. Spring‐fed streams, with temperatures ranging from 7.1 to 21.6 °C, in an alpine geothermal area in SW Iceland were chosen to test hypotheses on the effects of nutrients and temperature on stream primary producers. Ammonium nitrate was dripped into the lower reaches of eight streams, with higher reaches being used as controls, during the summers of 2006 and 2007. Dry mass of larger primary producers, epilithic chlorophyll a and biovolumes of epilithic algae were measured. 2. Bryophyte communities were dominated by Fontinalis antipyretica, and biomass was greatest in the warmest streams. Jungermannia exsertifolia, a liverwort, was found in low densities in few samples from cold streams but this species was absent from the warmest streams. 3. Nutrient enrichment increased the biomass of bryophytes significantly in warm streams. No effects of the nutrient addition were detected on vascular plants. The biomass of larger filamentous algae (mainly Cladophora spp.) was significantly increased by nutrient enrichment in cold streams but reduced by nutrients in warm streams. Thalloid cyanobacteria (Nostoc spp.) were not affected by nutrients in cold streams but decreased with nutrient addition in warm streams. Epilithic algal chlorophyll a was increased by nutrients in all streams and to a greater extent in 2007 than in 2006. Nutrient addition did not affect the epilithic chlorophyll a differently in streams of different temperatures. 4. There were small differential effects of nutrients, influenced by pH and conductivity, on different epilithic algal groups. 5. As global temperatures increase, animal husbandry and perhaps crop agriculture are likely to increase in Iceland. Temperature will directly influence the stream communities, but its secondary effects, manifested through agricultural eutrophication, are likely to be much greater.  相似文献   

15.
In the last few years, awareness in developed countries has increased regarding the importance of urban watercourses as essential natural resources for human well being. Macroinvertebrates have been used as bioindicators to complement physico-chemical evaluation of water quality after environmental perturbations. The city of Manaus is closely associated with the Amazonian rain forest and with its dense hydrographic network. Any perturbation, such as deforestation and/or water pollution in the city’s streams, therefore causes changes in the local ecosystem as the population increases. In this study, 65 streams were sampled in October and November 2003. Samples were taken from stream-bed sediment in the center of the channel and litter/sediment at the edge of the stream. Deforestation, total Nitrogen (TN), total Phosphorus (TP), depth, width, electrical conductivity, temperature and dissolved Oxygen (DO) were measured. A total of 115,549 specimens were collected, distributed among 152 taxa. Oligochaeta, Chironomus, Psychodidae and Ceratopogonidae were the taxa with the greatest frequencies of occurrence and the highest total abundances. Higher deforestation, TN and TP were correlated with lower DO and greater electrical conductivity, pH and water temperature. Deforestation, TN and TP were not associated with water velocity and stream width. Depth was the only variable correlated (negatively) with deforestation and not correlated with TN and TP. Greater deforestation, TN and TP were correlated with lower richness of taxa; but these variables did not affect abundance. Canonical Correspondence Analysis ordenated the streams into two groups; the majority of the streams were in the group with high levels of deforestation and with high values of TP, TN, pH, electrical conductivity and temperature, where the macroinvertebrates were reduced to a few taxa. The other group was composed of streams that were well oxygenated and deep, where richness of taxa was higher. These results indicate changes in community composition in response to changes in environmental conditions. The highest taxa correlation was with streams that were well oxygenated and had the greatest depth and water velocity. Species Indicator Analysis identified 29 taxa as indicators of nonimpacted streams, 16 as indicators of deforested streams and three as indicators of streams impacted by deforestation and domestic sewage. Of the total sampled streams, 80% were impacted by deforestation and water pollution and had fauna tolerant of these perturbations. Water pollution, represented by TN and TP, affected the macroinvertebrate fauna in a way similar to deforestation, i.e., causing reduction in taxa richness, simplifying the insect community composition without changing abundance. Use of the taxa suggested in this study as environmental indicators could improve the evaluation of water quality in the streams in Central Amazonia. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. Handling editor: D. Dudgeon  相似文献   

16.
In woodland streams, the decomposition of allochthonous organic matter constitutes a fundamental ecosystem process, where aquatic hyphomycetes play a pivotal role. It is therefore greatly affected by water temperature and nutrient concentrations. The individual effects of these factors on the decomposition of litter have been studied previously. However, in the climate warming scenario predicted for this century, water temperature and nutrient concentrations are expected to increase simultaneously, and their combined effects on litter decomposition and associated biological activity remains unevaluated. In this study, we addressed the individual and combined effects of water temperature (three levels) and nutrient concentrations (two levels) on the decomposition of alder leaves and associated aquatic hyphomycetes in microcosms. Decomposition rates across treatments varied between 0.0041 day?1 at 5 °C and low nutrient level and 0.0100 day?1 at 15 °C and high nutrient level. The stimulation of biological variables at high nutrients and temperatures indicates that nutrient enrichment of streams might have a higher stimulatory effect on fungal performance and decomposition rates under a warming scenario than at present. The stimulation of fungal biomass and sporulation with increasing temperature at both nutrient levels shows that increases in water temperature might enhance fungal growth and reproduction in both oligotrophic and eutrophic streams. The stimulation of fungal respiration and litter decomposition with increasing temperature at high nutrients indicates that stimulation of carbon mineralization will probably occur at eutrophied streams, while oligotrophic conditions seem to be ‘protected’ from warming. All biological variables were stimulated when both factors increased, as a result of synergistic interactions between factors. Increased water temperature and nutrient level also affected the structure of aquatic hyphomycete assemblages. It is plausible that if water quality of presently eutrophied streams is improved, the potential stimulatory effects of future increases in water temperature on aquatic biota and processes might be mitigated.  相似文献   

17.
The Moor House Nature Reserve, Westmorland, is situated in typical north Pennine moorland and experiences a rigorous climate. Three of the streams arise between 700 and 750 m O.D. and the fourth at 590 m O.D. The sampling sites lie between 570 and 540 m O.D. and conditions in the streams range from slow-flowing peaty-bottomed reaches to typical fast-flowing stony streams. Samples were taken in riffles and pools in May, August and October using the kick method. 111 taxa were recorded from the four streams, 90 of which were identified to the species level. The most abundant and widespread taxa were Leuctra inermis, L. fusca, Rhithrogena semicolorata, Elmis aenea and Chironomidae. Seasonal and annual variation in abundance of several species was marked with L. inermis most numerous in May, E. aenea and Chironomidae in August and R. semicolorata most abundant in October. The total number of animals caught was generally higher in riffles than in pools and the mean number per 60-sec kick for riffles and pools, based on May, August and October samples between 1967 and 1970, ranged from 110 to 128 in the four streams. Capnia bifrons, Paraleptophlebia submarginata, P. cincta, Leptophlebia marginata, Centroptilum pennulatum, Plectrocnemia geniculata, Cyrnus trimaculatus, Lepidostoma hirtum, Hydropsychidae (larvae indet.) and Philopotamidae (larvae indet.), are all additions to the lists of previously studied groups on the Reserve. All the species of Tricladida, Annelida, Coleoptera, Hydrachnellae and Pisidium are here recorded for the first time for the Reserve. Great Dodgen Pot Sike supported the largest number of species and species groups (88) and was characterized by having water with the lowest pH (6.75) of all the streams and by having the most gentle gradient and a relatively stable bottom. The fauna is discussed and compared with that of the adjacent Cow Green area. Some of the differences between these areas may be attributable to the slightly greater variation in flow-conditions and water chemistry in the Cow Green basin. Comparison with other areas in the British Isles are made briefly and it is suggested that habitat diversity may account for the species richness of the Moor House streams.  相似文献   

18.
Benthic diatoms are widely used indicators of human impacts on stream ecosystems because they are very responsive to changing environmental conditions. However, little research has explicitly focused on their reliability with regards to temporal variation in assemblage structure and environmental conditions. We examined variability in diatom-environment relationships at bi-weekly, monthly, and yearly time scales from 7 reference, 7 agricultural, and 2 acid mine drainage (AMD)-impacted streams, and how nutrient and pH fluctuations may affect the interpretation of diatom metrics and the Diatom Model Affinity (DMA) index. Reference streams had less bi-weekly variability in NO3-N concentrations than non-reference streams. The % eutraphentic diatoms and DMA scores were more strongly correlated with seasonal means of NO3-N and PO4-P concentrations than with same day concentrations. Most nutrient indicator metrics had strong correlations with watershed land use. All 14 non-AMD streams experienced substantial increases in NO3-N and decreases in temperature from November to May, which were associated with high species turnover, substantial changes in community structure, reduced diversity and richness, increased relative abundances of high nutrient diatoms, and decreases in low nutrient diatoms and DMA scores. The % acidophilic diatoms and DMA scores were significantly correlated with increased pH associated with greater precipitation at AMD sites from December to April (r = ?0.77, r = 0.62, respectively; P < 0.01). Yearly, DMA scores for all reference streams were consistently in the minimally impaired category, whereas scores for non-reference streams varied among impairment categories. Reference sites serve as reliable benchmarks for diatom ecological integrity during the summer. In this region, June to October is a recommended time period for diatom sampling in monitoring programs because subsequent shifts in hydrologic regimes, nutrients, and diatom assemblages occurred, affecting all sites and masking among stream differences attributable to agricultural land uses.  相似文献   

19.
Pachychilid snails are common and widespread in tropical Asian streams, and given their abundance, these heavy-shelled prosobranchs may serve as a ‘trophic dead-end’ preventing energy transfer to higher trophic levels. Sulcospira hainanensis (Bröt, 1872) is an abundant secondary consumer in Hong Kong streams, and tends to have higher standing biomass in less shaded sites. We predicted that S. hainanensis would be more productive in unshaded streams, where snails have a higher assimilation of more nutritious algal carbon. The production and population dynamics of S. hainanensis were studied along a gradient of shading in four Hong Kong streams. The increment-summation method was considered to most realistically represent snail production, which ranged from 1,612.8 to 6,123.9 mg ash-free dry mass m?2 year?1; these estimates were among the upper range of values reported for stream prosobranchs. Production, turnover, and growth were higher in unshaded streams, where the combined effects of higher light input and nutrient concentrations likely enhanced the supply of algal food. Despite high standing biomass (26% of total benthic fauna), S. hainanensis had a relatively low (~16%) contribution to total production in one site, suggesting that it is not a major trophic dead-end in the food webs of tropical Hong Kong streams.  相似文献   

20.
The global burden of vector-borne diseases accounts for more than 17% of infectious diseases in humans. Rapid global expansion of previously obscure pathogens, such as Zika and chikungunya viruses in recent years highlights the importance of understanding how anthropogenic changes influence emergence and spillover of vector-borne diseases. Deforestation has been identified as one anthropogenic change that influences vector-borne disease prevalence, although contrasting pictures of the effects of deforestation on vector-borne disease transmission have been reported. These conflicting findings are likely attributable to the inherent complexity of vector-borne disease systems, which involve diverse groups of vectors, hosts and pathogens, depending on geography. The current study represents a quantitative exploration of the link between deforestation and mosquitoes, the most important common constituents of vector-borne disease systems. Analysis of data compiled from published field studies for 87 mosquito species from 12 countries revealed that about half of the species (52.9%) were associated with deforested habitats. Of these species that are favored by deforestation, a much larger percentage (56.5%) are confirmed vectors of human pathogens, compared to those negatively impacted by deforestation (27.5%). Moreover, species that serve as vectors of multiple human pathogens were all favored by deforestation, including Anopheles bancroftii, Anopheles darlingi, Anopheles farauti, Anopheles funestus s.l., Anopheles gambiae s.l., Anopheles subpictus, Aedes aegypti, Aedes vigilax, Culex annulirostris, and Culex quinquefasciatus. Our quantitative analysis of vector and non-vector species, demonstrates that the net effect of deforestation favors mosquitoes that serve as vectors of human disease, while the obverse holds true for non-vectors species. These results begin to unify our understanding of the relationship between deforestation and vector mosquitoes, an important step in quantifying how land use change, specifically deforestation, affects human risk of vector-borne disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号