首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown cells that are found in the red glands of Mercenaria mercenaria accumulate, detoxify and excrete cadmium. Brown cell involvement in metal detoxification was due in part to endogenous glutathione (GSH) and protein sulfhydryl. Metallothionein (MT) and GSH have been shown to play an important role in metal detoxification in bivalve molluscs. This study showed that the protein sulfhydryl in brown cells of Mercenaria was in fact MT, that brown cell GSH functioned in acute protection against Cd2+ toxicity, that GSH provided the initial defense against Cd2+ toxicity prior to MT induction and that MT variants were unequal in response to Cd2+. During treatment of Mercenaria with 0.5 and 1.0 ppm Cd2+, brown cells were analyzed for MT by capillary electrophoresis and GSH colorimetrically after 0.25, 1, 2, 3, and 4 days. The data indicated that the cadmium-binding protein was MT with an apparent molecular weight of 9 kDa determined by gel filtration or 6 kDa as indicated by capillary electrophoresis. Glutathione appeared to prevail in the brown cell acute response to 0.5 ppm Cd2+, whereas MT appeared to prevail in the acute response to 1.0 ppm Cd2+. Capillary electrophoresis can be used to monitor and quantify MT and its variants in brown cells without need for prior separation of cytosolic components by chromatography. The change in MT-II was greater relative to the change in MT-I in the brown cell acute response to 0.5 ppm Cd2+, whereas the change in MT-1 was greater relative to the change in MT-II in the acute response to 1.0 ppm Cd2+. The variants of brown cell MT appeared to respond differentially to Cd2+ depending upon the Cd2+ treatment concentration.  相似文献   

2.
Cerium (Ce) compounds are now widely applied in medicine, agriculture, animal breeding, and daily life; however, the effects of Ce on human body, especially on the central nervous system, are still unclear. In order to investigate whether Ce exposure cause neurotoxicological effects, ICR mice were exposed to CeCl(3) through intragastric administration at 0, 2, 10, and 20?mg/kg body weight doses everyday for 60?days. The behaviors of spatial recognition memory, brain histopathology, the brain elements and neurochemicals, as well as enzymes activities in mice were determined. The Y-maze test showed that CeCl(3) exposure could significantly impair the behaviors of spatial recognition memory. Specifically, in these Ln(3+)-treated mice, the contents of Ca, Mg, Na, K, Fe, and Zn in brain were significantly altered, the activities of Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Ca(2+)/Mg(2+)-ATPase, acetylcholine esterase, and nitric oxide synthase were significantly inhibited; monoamines neurotransmitters such as norepinephrine, dopamine, and 5-hydroxytryptamine were significantly decreased, while the contents of acetylcholine, glutamate, and nitric oxide were significantly increased. These results indicated that CeCl(3) exposure could impair the learning ability, which is attributed to the disturbance of the homeostasis of trace elements, enzymes, and neurotransmitter systems in the mouse brain. Therefore, our study aroused the attention of Ln application and long-term exposure effects.  相似文献   

3.
Biochemical indicators and in vitro models, if they mimic in vivo responses, offer potentially sensitive tools for inclusion in toxicity assessment programs. The purpose of this study was to determine whether the HepG2 cell line would mimic known in vivo or in vitro (or both) responses of mammalian systems when confronted with cadmium (Cd2+). Uptake and compartmentalization of Cd2+, metallothionein (MT) compartmentalization, and glutathione (GSH) depletion were examined. In addition, several cytotoxic and stress effects, e.g., viability (neutral red [NR] uptake, 3-[4,5-dimethylthiozole-2-yl]-2,5,-biphenyl tetrazolium bromide [MTT] dye conversion, and live/dead [L/D]), membrane damage (lactate dehydrogenase leakage), metabolic activity (adenosine triphosphate levels), and detoxification capabilities (GSH content, cytochrome P4501A1/2 [EROD (ethoxyresorufin-o-deethylase)] activity, and MT induction), were measured in both naive (no previous exposure) and Cd2+ preexposed cells. Cadmium uptake increased during a 24-h period. Metallothionein induction occurred in response to both Cd2+ and ZnCl2; however, Cd2+ was the more potent inducer. Both Cd2+ and MT were localized primarily in the cytoplasmic compartment. All biochemical responses, except EROD, showed concentration- response relationships, after 24-h exposure to Cd2+ (ranges 0-3 ppm [26.7 microM]). Cadmium effects were reduced in preexposed cells, indicating adaptive tolerance or increased resistance had occurred. Twenty-four-hour LC50, dose causing death of 50% of the test subjects, values were 0.97, 0.69, and 0.80 ppm (8.7, 6.2, and 7.2 microM) for naive cells and 1.45, 1.21, and 1.39 ppm (12.9, 10.7, and 12.3 microM) for preexposed cells based on the NR, MTT, and L/D assays, respectively. These data indicate that this carcinoma cell line is a useful in vitro model for cadmium toxicity studies.  相似文献   

4.
To investigate the toxicity of cadmium (Cd) on female reproduction in birds, this study was conducted to determine the changes in biochemical parameters of serum and ovary tissue caused by dietary cadmium in hens. Ninety 50-day-old hyline white hens were randomly divided into three groups (30 hens per group): a control group was fed with basal diet, a low dose group was fed with basal diet containing 140 mg/kg CdCl(2) and a high dose group was fed with basal diet containing 210 mg/kg CdCl2. After being treated with Cd for 20, 40 and 60 days, ovary and serum samples were collected and examined for Cd content, histological evaluations, malondialdehyde (MDA) content, glutathione peroxidase (GPx) content, activities of superoxide dismutase (SOD), nitric oxide (NO) content, nitric oxide synthase (NOS) activity, and serum estradiol and progestogen levels. The results showed that the content of Cd, MDA, NO and the activity of NOS in ovary and serum were increased (P < 0.05), while the level of GPx and the activity of SOD were decreased (P < 0.05) in low dose and high dose groups. A time- and dose-dependent correlation was observed between serum and ovary tissue cadmium levels. The number of apoptotic cells in the ovary was increased in the Cd treatment group (P < 0.05). Extensive damage was observed in the ovary. The level of estradiol and progestogen in the serum of low dose and high dose groups was decreased significantly (P < 0.05). It indicated that Cd exposure resulted in oxidative damage of hens' ovary tissue by altering antioxidant defense enzyme systems, lipid peroxidation, apoptosis and endocrine disturbance which may be possible underlying reproductive toxicity mechanisms induced by Cd.  相似文献   

5.
Gut Zn homeostatic responses to low, replete, and excess dietary Zn (10, 150, and 400 mg Zn/kg, respectively) were compared in mice with (MT+/+) and without (MT?/?) metallothionein (MT) expression. MT concentrations decreased progressively from stomach (12.9 nmol Cd bound/g) to colon (4.6 nmol Cd bound/g). Small intestinal MT was increased in mice fed the 400-mg Zn/kg diet (+130%, duodenum; +56%, jejunum; +29%, terminal ileum), but not in the stomach, cecum and colon. Zn concentrations were much higher in the distal gut at increasing Zn intakes in MT+/+ mice but to a lesser extent in MT?/? mice. On the 10-mg Zn/kg diet, MT?/? mice had 45% more Zn in the jejunum/ileum than MT+/+ mice. In fasted (20 h) mice, Zn concentrations in all gut regions were similar to those of MT+/+ mice fed the 10-mg Zn/kg diet, irrespective of prior Zn intake or genotype. Liver MT quadrupled in mice fasted after the 10-mg Zn/kg diet but only doubled after the 400-mg Zn/kg diet, a trend also present in gut MT. Glucagon administration stimulated gut as well as liver MT, implicating it as a major component of the MT response to fasting. MT?/? mice had five times more variation than MT+/+ mice in plasma Zn over all dietary groups. Together, these findings demonstrate that without MT, there is little modification of regional gut Zn concentrations in response to extremes of dietary Zn and poorer regulation of Zn homeostasis.  相似文献   

6.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5-2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

7.
The protective effect of a fermented substance from Saccharomyces cerevisiae (FSSC) on liver injury caused by acetaminophen (AAP) was studied in mice. Mice were pretreated with FSSC (0.5–2.0 g/kg, p.o.) for 4 d, and on the fourth day, the mice received an overdose of AAP (500 mg/kg, i.p.). Subsequently, they were sacrificed at 7 h, and blood was drawn from the abdominal vein and liver samples were collected. Histological and biochemical examinations revealed that the administration of AAP caused liver injury in the mice, including increases in plasma alanine aminotransferase and asparate aminotransferase activities and decreases in the hepatic reduced form of glutathione (GSH) content and antioxidant enzyme activities. Prior to AAP treatment, the mice pretreated with FSSC showed significantly reduced levels of alanine aminotransferase (ALT) and aspirate aminotransferase (AST) activity. Liver histology in the FSSC-pretreated mice was significant. In these mice, pretreatment with FSSC also served to reduce hepatic GSH depletion and the inhibition of antioxidant enzyme activity caused by AAP overdose. In conclusion, oral administration of FSSC significantly reduced AAP-induced hepatic injury in the mice.  相似文献   

8.
Cadmium was administered to 32 adult ICR mice i.p. in two single doses (0.25 and 0.5 mg CdCl2, per kg of b.w.). After 48 hours concentrations of cadmium in kidneys, liver, spleen, muscle (m. quadriceps femoris), ovaries and testes and the concentration of retinyl palmitate, retinol and beta-carotene in kidney, liver and testes were determined. Significantly higher cadmium concentration was found in liver, kidney and ovary in both experimental groups in comparison with the control group (p<0.001). In muscle, spleen and testis the cadmium level was higher, however not significantly. No significant differences in the concentration of retinyl palmitate, retinol and alpha-carotene in liver were found. Concentration of alpha-carotene in kidney and testis was significantly decreased in both groups administered with cadmium (p<0.001). Concentration of retinyl palmitate was significantly lower in testis in the group with higher cadmium level (p<0.001) and the concentration of retinol significantly decreased in kidney and testis of mice after an administration of 0.5 mg CdCl2/kg b.w.  相似文献   

9.
Mercury is a potent environmental contaminant that exerts toxic effect on various vital organs in the human body. Recently, we isolated glycoprotein from Zanthoxylum piperitum DC (ZPDC), which has antioxidant and anticancer effects. In the present study, we determined the preventive effects of ZPDC glycoprotein on hepatic damage induced by mercury chloride (HgCl2). We evaluated the activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], extracellular signal‐regulated kinase (ERK)1/2, p38 mitogen‐activated protein kinase (MAPK), cyclo‐oxygenase (COX‐2), inducible nitric oxide synthetase (iNOS), and activator protein (AP‐1) and the quantitative expressions of nuclear factor E2‐related factor (Nrf2), heme oxygenase (HO‐1), metallothionein (MT) and reduced glutathione (GSH) in mercury‐chloride‐exposed (50 μM and 10 mg/kg body weight) primary cultured hepatocytes and ICR mice, using biochemical assays, radioactivity and immunoblot analysis. The results demonstrated that ZPDC glycoprotein decreased the levels of LDH, ALT, HO‐1 and MT, whereas it increased the activities of hepatic antioxidant enzymes (SOD, CAT and GPx) and reduced GSH in mercury‐chloride‐exposed primary cultured hepatocytes. Also, it suppressed arachidonic acid release and expression of ERK, p38 MAPK, COX‐2, iNOS, AP‐1 and Nrf‐2 in primary cultured hepatocytes and ICR mice exposed to mercury chloride. Collectively, ZPDC glycoprotein may have potential applications to prevent hepatotoxicity induced by mercury chloride. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This study was designed to investigate whether chlorella supplementation may ameliorate oxidative stress and nuclear factor kappa B (NFkappaB) activation in peritoneal macrophages and liver of C57BL/6 mice fed on an atherogenic diet. The animals were maintained on an atherogenic diet (control), or an atherogenic diet supplemented with 3% (w/w) chlorella or 5% (w/w) chlorella for 12 wks. The plasma and hepatic lipid levels were not affected by chlorella supplementation. Hepatic thiobarbituric acid-reactive substances and superoxide anion production in peritoneal macrophages were significantly lower in the 5% chlorella group (p<0.05), but the glutathione level was not altered by chlorella supplementation. The hepatic antioxidative enzyme activities of Cu, Zn-superoxide dismutase and catalase were higher in the mice fed on the 5% chlorella diet (p<0.05). The plasma aspartate aminotransferase activity was lower in the mice fed on the chlorella-containing diets (p<0.05), whereas the alanine aminotransferase activity was not affected by chlorella supplementation. The NFkappaB nuclear binding activities of peritoneal macrophages and liver were significantly lower in the 5% chlorella groups (p<0.05). These results suggest that chlorella supplementation may attenuate oxidative stress by reducing reactive oxygen production and increasing antioxidative processes, thus suppressing inflammatory mediator activation in peritoneal macrophages and liver.  相似文献   

11.
Metallothionein induction as a potent means of radiation protection in mice   总被引:4,自引:0,他引:4  
A striking resistance to lethal damage from a single dose of 6-8 Gy of X rays has been found in mice which had received various pretreatments to induce metallothionein (MT) synthesis in the liver prior to irradiation. Mice were injected with manganese (10 mg Mn/kg) or cadmium (3 mg Cd/kg) salt subcutaneously, or a patch of dorsal skin (2 X 2 cm2) was excised 1 or 2 days prior to irradiation. The increased tolerance of these mice to radiation was established by a marked decrease of mortality rate, an increase of mean survival time, a reduction of weight loss, and a smaller decrease in the number of leukocytes as compared with the control group. The LD50/30 for control mice was 6.3 Gy, while the corresponding values for the groups pretreated with Mn, Cd, and skin excision were 7.5, 7.7, and 7.9 Gy, respectively. The normal level of MT in mouse liver was approximately 25 micrograms/g tissue. This level increased 2.5- to 3-fold 24 h after 6.3 Gy irradiation. The MT levels of mice pretreated with Cd, Mn, and skin excision were increased 8-, 5-, and 7-fold, respectively, prior to irradiation as compared with the preirradiation control. These results indicate that the induction of MT in mouse liver is a significant factor in the mechanism of protection against radiation.  相似文献   

12.
Chronic caloric restriction (CCR) prevents mammary tumorigenesis in rodents, but a protective effect for intermittent caloric restriction (ICR) is less well documented. We recently reported that ICR reduced mammary tumor (MT) incidence of mouse mammary tumor virus-transforming growth factor (MMTV-TGF)-alpha mice to a greater extent than did CCR. Here, we repeated this protocol and obtained serum and tissue samples. Ad libitum (AL) MMTV-TGF-alpha mice were fed AIN-93M diet. Beginning at 10 weeks of age, ICR mice received isocaloric AIN-93M-mod diet (2-fold increases in protein, fat, vitamins, and minerals) at 50% of ad libitum for 3 weeks followed by 3 weeks refeeding with AIN-93M diet. CCR mice were pair-fed AIN-93M:AIN-93M-mod (2:1) matching intakes for restriction/refeeding cycles. Mice were sacrificed for MT size, at 79 (end of 12th restriction) or at 80 (1 week after 12th refeeding) weeks of age. AL and ICR-80 mice had heavier body weights than ICR-79 and CCR mice (P < 0.0001). Cumulative food intakes of ICR and CCR mice were reduced 12% and 15% versus AL mice (P < 0.0001). However, ICR mice consumed significantly (P < 0.0001) more food than did AL mice during refeeding. MT incidence was 84%, 13%, and 27% for AL, ICR, and CCR mice, respectively. MT weight (P < 0.0011) and number (P < 0.01) were higher for AL mice compared with ICR and CCR mice. AL and ICR-80 mice had similar serum IGF-I levels, but only AL values were higher than those of ICR-79 and CCR mice (P < 0.0017). ICR mice had more MT DNA breaks compared with AL and CCR mice, suggesting enhanced apoptosis (P < 0.02). AL mice had higher mammary fat pad ObR and ObRb leptin receptor mRNA expression than did ICR and CCR mice (P < 0.001), but there was no effect on MTs. These results confirm that ICR prevents development of MTs to a greater extent than does CCR, although "overeating" during refeeding may compromise this protection.  相似文献   

13.
The present study was carried out to evaluate the effect of exogenously administered metallothionein (MT) to rats exposed to high cadmium levels. A total of 72 rats were used in the study. The animals were divided into three groups: controls, Cd administered, and Cd+MT. Cadmium was administered by subcutaneous injection of cadmium(II) chloride at a dose of 3.5 mg/kg for 7 d. In addition to CdCl2, 30 μmol/kg MT was administered to the second group of rats (group II). Control rats received 0.5 mL physiologic serum via subcutaneous injection. Eight rats from each group were sacrificed on the 1st, 3rd, 5th, and 7th day after administration of the compounds. Liver, kidney, and blood samples were harvested. Levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), serum ALT, AST, BUN, ALP, creatinine, and urea were measured. MDA levels in group I were observed to increase starting from d 1 compared to group II (p<0.05). Although MDA levels in group II were higher than controls (p<0.05), they were lower, especially in liver and blood, compared to group II. Erythrocyte GSH-Px activity levels were determined to decrease starting from d 1 in both groups (p<0.05). Decreases in GSH-Px activity levels in group II were less than group I. Serum creatinine levels in both groups were increased significantly compared to controls (p<0.05); the increase in group I was higher than group II. Serum ALT, AST, and ALP levels in group I increased to very high levels compared to controls, whereas increases in group II were at moderate levels (p<0.05). Although serum BUN levels were determined to be reduced, there was no significant change among the groups. Serum urea levels in both groups were higher than controls. Based on our results, it is possible to postulate that exogenous MT can act as antioxidant against Cd toxicity and lipid peroxidation.  相似文献   

14.
Ethanol-induced hepatotoxicity and protective effect of betaine.   总被引:2,自引:0,他引:2  
The protective effects of betaine in ethanol hepatotoxicity were investigated in 24 female wistar albino rats. Animals were divided into three groups: control, ethanol and ethanol + betaine group. Animals were fed liquid diets and consumed approximately 60 diet per day. Rats were fed ethanol 8 kg(- 1) day(- 1). The ethanol + betaine group were fed ethanol plus betaine (0.5% w/v). All animal were fed for 2 months. Reduced glutathione, malondialdehyde and vitamin A were determined in the liver tissue. Alanine aminotransferase activities were also measured on intracardiac blood samples. GSH levels in the ethanol group were significantly lower than these in the control group (p < 0.001). GSH was elevated in the betaine group as compared to the ethanol group (p < 0.001). MDA in the ethanol group was significantly higher than that in the control group (p < 0.05). MDA was decreased in the betaine group as compared to the ethanol group (p < 0.05). Vitamin A in the ethanol group was significantly lower than that in the control group (p < 0.01), but, in the ethanol + betaine group it was high compared with the ethanol group (p < 0.01). ALT in the ethanol group was higher than that in the control group (p < 0.05). Oxidative stress may play a major role in the ethanol-mediated hepatotoxicity. Betaine may protect liver against injury and it may prevent vitamin A depletion. Therefore, it may be a useful nutritional agent in the prevention of clinical problems dependent on ethanol-induced vitamin A depletion and peroxidative injury in liver.  相似文献   

15.
In the present study, we have investigated the influence of sub-acute treatment with cadmium (Cd) on some parameters indicative of oxidative stress and DNA damage in tissues of pregnant female rats. Pregnant female rats (n=6) were injected subcutaneously, daily with a dose of cadmium chloride of 3 mg/kg body weight (b.w.) from day 6 to day 19 of pregnancy, and they were allowed to deliver normally. MDA level and GPx, CAT and SOD activities were used as markers of oxidative stress in liver and kidney. The 8-oxo-dG level was measured by the HPLC-EC system. Cd treatment increased MDA (+116%, p<0.01) in kidney. Moreover, Cd treatment also decreased CuZn-SOD (-11%, p<0.05) and GSH level (-52%, p<0.05) in kidney. Treated rats displayed an increase of the liver metallothionein (MT) level. Induction of MT in liver was probably implicated in the detoxification of Cd. The high level of Cd (3 mg/kg) used in the present study is partially neutralized by MT in liver, whereas the free fraction could be implicated in the oxidative stress and DNA oxidation observed in kidney. Cd treatment failed to alter 8-oxodGuo, indicating the absence of DNA oxidation in liver; by contrast, the same treatment increased the 8-oxodGuo level (+51%, p<0.05) in the kidney of pregnant female rats, indicating an oxidative stress associated with DNA damage only in kidney.  相似文献   

16.
The effects of a protein-free diet on the host-parasite relationship of Echinostoma caproni in ICR mice were studied. The experimental diet was a customized protein-free diet (PFD) in pellet form containing 0% protein. The control diet consisted of a standard laboratory diet containing 23% casein as a source of protein. A total of 24 mice were each infected with 15 metacercarial cysts of E. caproni. Twelve mice were placed on the experimental diet (experimentals) and the remaining mice (controls) were placed on the control diet. Experimental and control mice were necropsied at 2, 3, and 4 weeks postinfection (p.i.). The weight of mice on the PFD was markedly lower than that of mice on the control diet. The length and circumference of the small intestine of infected mice on the PFD were significantly lower than those of the controls at 3 weeks p.i. (Student's t-test; P < 0.05). Worm recoveries from mice on the PFD were significantly lower than those of the controls at 3 weeks p.i. There was a significant decline in worm body area in worms from the mice on the PFD compared with those on the control diet at 2, 3, and 4 weeks p.i. Worm dry weights from mice on the PFD were significantly lower than those on the control diet at 2 weeks p.i. Worms from hosts on the PFD were located more posteriad in the gut than those recovered from mice on the control diet. The findings suggest that the PFD contributes to growth retardation of E. caproni in ICR mice.  相似文献   

17.
Cytosolic activity of glutathione peroxidase (GSH-Px), selenium-independent GSH-Px, and catalase, thiobarbituric acid reactive substances (TBARS), and glutathione and selenium (Se) concentration were measured in ocular tissues of rats maintained on a low (0.05 ppm) or adequate (0.10 ppm) Se diet and treated with 0 or 25 ppm cadmium (Cd) in their drinking water for fourteen weeks. Feeding rats a low Se diet resulted in a significant decrease in GSH-Px activity when compared to rats maintained on adequate dietary Se, irrespective of Cd treatment. Se-independent GSH-Px activity of rats maintained at 0.05 ppm Se decreased 27% when compared to Se-adequate controls, whereas activity increased 38% in the Cd-treated low-Se group. When comparisons were made between ocular TBARS in rats maintained at either level of dietary Se and treated with 0 or 25 ppm Cd, a trend toward decreased amounts of TBARS in Cd-treated groups was observed. A significant decrease in ocular Se concentration occurred in rats fed 0.05 ppm Se when compared to the Se-adequate group. Administering Cd to the low-Se group increased ocular Se levels 100%. A negative correlation between ocular Se concentration and TBARS was observed, suggesting a possible alternate role for Se as an antioxidant in the eye.  相似文献   

18.
Zinc (Zn) deficiency in utero has been shown to cause a variety of disease states in children in developing countries, which prompted us to formulate the hypothesis that fetal epigenetic alterations are induced by zinc deficiency in utero. Focusing on metallothionein (MT), a protein that contributes to Zn transport and homeostasis, we studied whether and how the prenatal Zn status affects gene expression. Pregnant mice were fed low-Zn (IU-LZ, 5.0 μg Zn/g) or control (IU-CZ, 35 μg Zn/g) diet ad libitum from gestation day 8 until delivery, with a regular diet thereafter. Bisulfite genomic sequencing for DNA methylation and chromatin immunoprecipitation assay for histone modifications were performed on the MT2 promoter region. We found that 5-week-old IU-LZ mice administered cadmium (Cd) (5.0 mg/kg b.w.) have an elevated abundance of MT2 mRNA compared with IU-CZ mice. Alteration of histone modifications in the MT2 promoter region having metal responsive elements (MREs) was observed in 1-day-old and 5-week-old IU-LZ mice compared with IU-CZ mice. In addition, prolongation of MTF1 binding to the MT2 promoter region in 5-week-old IU-LZ mice upon Cd exposure is considered to contribute to the enhanced MT2 induction. In conclusion, we found for the first time that Zn deficiency in utero induces fetal epigenetic alterations and that these changes are being stored as an epigenetic memory until adulthood.  相似文献   

19.
This study compared the ability of daidzein, a soy isoflavone, with that of 17beta-estradiol to prevent bone loss in cadmium (Cd)-exposed ovariectomized (OVX) rats during growth. Four week-old female Wistar rats were randomly assigned to five treatment groups of 9 rats each, either (1) sham-operated (SH); (2) OVX and placed on experimental diets (OVX); (3) OVX fed 50 ppm of CdCl2 (OVX-Cd); (4) OVX fed 50 ppm of CdCl2 and 10 microg of daidzein per kg of body mass (OVX-CD-D); or (5) OVX fed 50 ppm of CdCl2 and 10 microg of estrogen per kg of body mass (OVX-CD-E). All rats were given free access to AIN-76 modified diet and drinking water, with or without Cd, for 8 weeks. The OVX groups gained more (P < 0.05) body mass than the SH group. Femoral mass was increased by feeding daidzein and estradiol, whereas femoral length was not (P > 0.05) significantly different among groups. Femoral breaking force was not significantly different among groups, however, femoral BMD was significantly lower in OVX-Cd than in the SH and OVX groups. Morphologically proliferative cartilage and hypertrophic cells in femur showed normal distribution in OVX-Cd-D and OVX-Cd-E groups unlike those in OVX-Cd group. These findings suggest that Cd-OVX-induced osteopenia or osteoporosis probably results from an increase in bone turnover.  相似文献   

20.
Fifty-two healthy Swiss Male Albino rats aged two mo were used in this study. They were divided into four groups: control (C), diabetic (D), cadmium (Cd), and diabetic+Cd (D+Cd) groups. Diabetic condition was induced in D and D+Cd groups by administration of alloxane (5 mg/100 g). After this treatment, CD and D+Cd groups were injected with CdCl2 ip (2 mg/kg/wk). At the end of the 2-mo experimental period, thiobarbituric acid reactive substances (TBARS), plasma and erythrocyte selenium (SE), plasma ceruloplasmin (Cp), and vitamin E (vit E) were determined in four groups of rats. The erythrocyte Se was lower in the experimental groups than in the controls. Plasma Se was significantly decreased in the D and D+Cd groups compared with the control group. Plasma Cp was unaltered. Plasma vit E was significantly decreased in Cd group in comparison with the C, D, and D+Cd groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号