首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional (2-D) gel electrophoresis system in which native and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) are performed subsequently to analyze protein mixtures is described. Reasonably good resolution and excellent reproducibility was obtained when the proteins in the soluble protein extract from E. coli cells were separated using this procedure. Perhaps more importantly, the relevance of this native/SDS-2-D PAGE for the detection of protein interactions in a complicated protein mixture was examined using the interaction between interleukin-2 (IL-2) and its receptor alpha chain (IL-2Ralpha) in the E. coli protein extract as a model system. Native gel was used to preserve the interactions between the two molecules and SDS gel was used to maximize the separation of the denatured proteins. Mobility changes of these two proteins on 2-D maps resulted from the formation of IL-2/IL-2-2Ralpha complex were clearly observed despite of the presence of a large number of other protein spots. Thus, this approach is a useful complement to the standard 2-D gel electrophoresis system for analyzing complicated protein mixture, especially for the study of protein interactions.  相似文献   

2.
Shimazaki Y  Sugawara Y  Manabe T 《Proteomics》2004,4(5):1406-1411
After cytosol proteins in the mouse liver were separated by nondenaturing two-dimensional electrophoresis (2-DE), activities of several enzymes, such as fructose bisphosphatase, sorbitol dehydrogenase and malate dehydrogenase, transferase and sorbitol dehydrogenase, or several dehydrogenases, were analyzed on the same 2-D gel. Further, peptidase (or protease) activity can be examined by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) when peptides such as angiotensin and adenocorticotropic hormone are incubated in the presence of the cytosol protein separated by nondenaturing 2-DE. Sequence structures of proteins on the 2-D gel were analyzed by peptide mass fingerprinting using MALDI-TOF-MS or by peptide sequencing using electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The combination of activity and sequence structure accurately verified the position and activity range of the separated enzymes on the nondenaturing 2-D gel. From these results, we created a nondenaturing 2-D enzyme profile involving activities and sequence structure of cytosol proteins from mouse liver. This profile can be used for checking whether activities of enzymes were specifically or nonspecifically inhibited by inhibitors.  相似文献   

3.
The phosphorylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) is thought to play an important role in cell regulation and signal transduction. However, the relationship between hnRNP K phosphorylation and cellular events has only been indirectly examined, and the phosphorylated forms of endogenous hnRNP K have not been biochemically characterized in detail. In this study, we extensively examined the phosphorylated forms of endogenous hnRNP K by direct protein-chemical characterization using phosphate-affinity electrophoresis followed by immunoblotting and MS. Phosphate-affinity electrophoresis enabled us to sensitively detect and separate the phosphorylated forms of hnRNP K. When we used 2-DE with phosphate-affinity SDS-PAGE in the second dimension, the nuclear fraction contained more than 20 spots of endogenous hnRNP K on the 2-D map. We determined that the multiple forms of hnRNP K were produced mainly by alternative splicing of the single hnRNP K gene and phosphorylation of Ser116 and/or Ser284. Furthermore, the subcellular localization of these proteins revealed by the 2-D gel correlated with their phosphorylation states and alternative splicing patterns. The results also indicated that the multiple forms of hnRNP K were differentially modulated in response to external stimulation with bacterial lipopolysaccharide or serum.  相似文献   

4.
The recent upsurge in proteomics research has been facilitated largely by streamlining of two-dimensional (2-D) gel technology and the parallel development of facile mass spectrometry for analysis of peptides and proteins. However, application of these technologies to the mitochondrial proteome has been limited due to the considerable complement of hydrophobic membrane proteins in mitochondria, which precipitate during first dimension isoelectric focusing of standard 2-D gels. In addition, functional information regarding protein:protein interactions is lost during 2-D gel separation due to denaturing conditions in both gel dimensions. To resolve these issues, 2-D blue-native gel electrophoresis was applied to the mitochondrial proteome. In this technique, membrane protein complexes such as those of the respiratory chain are solubilized and resolved in native form in the first dimension. A second dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel then denatures the complexes and resolves them into their component subunits. Refinements to this technique have yielded the levels of throughput and reproducibility required for proteomics. By coupling to tryptic peptide fingerprinting using matrix-assisted laser desorption/ionization-time of flight mass spectrometry, a partial mitochondrial proteome map has been assembled. Applications of this functional mitochondrial proteomics method are discussed.  相似文献   

5.
The Gradiflow trade mark, a preparative electrophoresis instrument capable of separating proteins on the basis of their size or charge, was used to separate whole cell lysates, prepared from bakers yeast (Saccharomyces cerevisiae) and Chinese snow pea seeds (Pisum sativum macrocarpon), into protein fractions of different pH regions. Both broad and narrow range (with a difference of approximately 1 pH unit) pH fractions were obtained. Analysis of the protein fractions by isoelectric focusing gels and two-dimensional (2-D) polyacrylamide gel electrophoresis indicated minimal overlap between the pH fractions. Further, when the prefractionated acidic samples were analyzed on pH 4-7 immobilized pH gradient 2-D gels, improved resolution of the proteins within the chosen pH region was achieved compared to the unfractionated samples. This study demonstrates that the Gradiflow could be used as a preparative electrophoresis tool for the isolation of proteins into distinct pH fractions.  相似文献   

6.
We describe fluorescence-based 2-D gel electrophoresis methods for visualization of low abundant, cancer relevant tyrosine phosphorylated (pTyr) proteins. The methods investigated were fluorescent Western blotting and two-dimensional difference gel electrophoresis (2-D DIGE) for detection of non-enriched and immunoaffinity enriched pTyr protein patterns. The same anti-phosphotyrosine specific antibody, 4G10, was used for both approaches. The results from fluorescent Western blotting of total proteins and from enriched CyDye DIGE pre-labeled pTyr proteins showed similar down regulation of phosphorylation upon treating of cells from a cancer model system (K562 chronic myeloid leukemia cells) with imatinib. This treatment introduced a known perturbation of phosphorylation that enabled testing of these new approaches to analyze variations in tyrosine phosphorylation levels. Enrichment of pTyr proteins was found highly advantageous for the outcome. Out of a simplified 2-D DIGE experiment of immunoaffinity enriched control and treated pTyr proteins, differential analysis as well as protein identification by mass spectrometry (MS) was possible.  相似文献   

7.
Low TY  Seow TK  Chung MC 《Proteomics》2002,2(9):1229-1239
A classical proteomic analysis was used to establish a reference map of proteins associated with healthy human erythrocyte ghosts. Following osmotic lysis and differential centrifugation, ghost proteins were separated by either one-dimensional gel electrophoresis (1-DE) or two-dimensional gel electrophoresis (2-DE). Selected protein bands or spots were excised and trypsinized before mass spectrometric analyses and data mining was performed using the SWISS-PROT and NCBI nonredundant databases. A total of 102 protein spots from a 2-D gel were successfully identified. These corresponded to 59 distinct polypeptides with the remaining 43 being isoforms. As for the 1-D gel, 44 polypeptides were identified, of which 19 were also found on the 2-D gel. Most of the 19 common polypeptides were membrane cytoskeletal proteins that are often referred to as the "band" proteins. The remaining 25 polypeptides that were found exclusively on 1-D gels were proteins with high hydrophobicity (e.g., sorbitol dehydrogenase and glucose transporter) and high molecular mass (e.g., Kell blood group glycoprotein and Janus-kinase 2). A higher number of signaling proteins was also identified on 1-D gels compared to 2-D gels. These included Ras, cAMP dependent protein kinase and TGF-beta receptor type 1 precursor.  相似文献   

8.
A method was developed in order to analyse high molecular mass proteins by two-dimensional (2-D) electrophoresis using a copolymer of acrylamide and allyl agarose instead of Bis cross-linked polyacrylamide (PA) gels in sodium dodecyl sulphate-electrophoresis. In this work, the matrix composition was optimised to improve the resolution of proteins larger than 200 kDa. The new gel type does not entrap large proteins and protein complexes at the application site. Mechanical properties were investigated through rheological measurements, which suggested the formation of a highly entangled elastomeric soft gel. A high 2-D resolution of proteins, extracted from membranes of red blood cells, was obtained in these gels. An example of tryptic digestion, peptide extraction and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry was reported. The results demonstrate that the new gel is fully compatible with mass spectrometry protein analysis.  相似文献   

9.
The dissociation of noncovalently associated protein-protein complexes in human plasma was examined by comparing two-dimensional gel electrophoresis (2-DE) patterns obtained in two different electrophoretic conditions. A type I 2-DE pattern was obtained running nondenaturing isoelectric focusing (IEF) followed by nondenaturing gel electrophoresis and a type II 2-DE pattern was nondenaturing IEF followed by sodium dodecyl sulfate gel electrophoresis. Micro-sized gels (internal diameter(id) 1.3 x 35 mm polyacrylamide IEF gels and 38 x 38 x 1 mm polyacryamide slab gels) were used to follow the dissociation processes of major plasma proteins. Larger gel sizes (id 3.4 x 160 mm agarose IEF gels and 160 x 120 x 2.8 mm polyacrylamide slab gels) were used to detect minor plasma proteins dissociated from major proteins. About 110 spots, which have not been detected on type I (nondenaturing) 2-D gels, newly appeared on type II large-sized 2-D gels at molecular masses smaller than 67 kDa. Some of these spots had been analyzed and identified, but about 70 minor spots (isoelectric point 5.5-7.5 and relative molecular mass 8-45 kDa) were detected for the first time by applying large volumes of human plasma samples to the large type II 2-D gels. These minor spots could be concentrated on type II 2-D gels by enriching the immunoglobulin G (IgG) fraction under nondenaturing conditions, and they disappeared when IgG was removed from the fraction. These results strongly suggest that many of the minor spots newly detected were bound to IgG in physiological conditions.  相似文献   

10.
Ventzki R  Rüggeberg S  Leicht S  Franz T  Stegemann J 《BioTechniques》2007,42(3):271, 273, 275 passim
Two-dimensional gel electrophoresis (2-DE) separation has not been considered suitable for large-scale comparative protein expression studies due to its limited throughput. We present a high-throughput analysis method based on three-dimensional (3-D) geometry gel electrophoresis. Following conventional isoelectric focusing (IEF), up to 36 immobilized pH gradient (IPG) strips are arrayed on the top surface of a 3-D gel body, and the samples transferred electrokinetically to the gel. A specific thermal management ensures that sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) occurs under identical electrophoretic and thermal conditions, avoiding gel-to-gel variations and thereby providing immediate comparability of the separation patterns. Proteins are Cy3-labeled for online detection of laser-induced fluorescence (LIF). Images are acquired by a digital camera and recorded as a 3-D image stack during electrophoresis. Image processing software decomposes the 3-D image stack into vertical sections representing conventional 2-DE slab gels, making results immediately accessible without further gel processing. The large number of simultaneously analyzed samples (n = 36) allows treating the sample index as a quasi-continuous experimental parameter (e.g., concentration, time, dose). The method offers a wide range of applications in molecular discovery, clinical diagnosis, pharmacology, and toxicology, like protein monitoring during disease development and screening of drug candidates for their effect on protein expression.  相似文献   

11.
Linkage analysis by two-dimensional DNA typing.   总被引:3,自引:0,他引:3       下载免费PDF全文
In two-dimensional (2-D) DNA typing, genomic DNA fragments are separated, first according to size by electrophoresis in a neutral polyacrylamide gel and second according to sequence by denaturing gradient gel electrophoresis, followed by hybridization analysis using micro- and minisatellite core probes. The 2-D DNA typing method generates a large amount of information on polymorphic loci per gel. Here we demonstrate the potential usefulness of 2-D DNA typing in an empirical linkage study on the red factor in cattle, and we show an example of the 2-D DNA typing analysis of a human pedigree. The power efficiency of 2-D DNA typing in general is compared with that of single-locus typing by simulation. The results indicate that, although 2-D DNA typing is very efficient in generating data on polymorphic loci, its power to detect linkage is lower than single-locus typing, because it is not obvious whether a spot represents the presence of one or two alleles. It is possible to compensate for this lower informativeness by increasing the sample size. Genome scanning by 2-D DNA typing has the potential to be more efficient than current genotyping methods in scoring polymorphic loci. Hence, it could become a method of choice in mapping genetic traits in humans and animals.  相似文献   

12.
Veeser S  Dunn MJ  Yang GZ 《Proteomics》2001,1(7):856-870
In proteomic research, two-dimensional electrophoresis (2-D) is an important tool for investigating differential patterns of qualitative and quantitative protein expression. The strength of the technique is due to its unrivalled power of being able to separate simultaneously thousands of proteins. The key to the comparison of 2-D protein profiles, however, lies in the use of a fast and robust image matching process which is essential to the subsequent quantification procedure. To satisfy the growing demand for a robust and fully automatic method of matching 2-D gel protein separation profiles, we describe in this paper a novel registration technique based on image intensity distribution rather than selected features. The method uses a multiresolution representation of the gel profiles and exploits the fact that coarse approximations to the optimal matching can be extracted efficiently from low-resolution images. This permits the removal of misalignments at different scales in a systematic manner and the strength of the new method has been confirmed by a double blind trial of 111 2-D gel pairs. The proposed method requires neither landmarks nor an a priori image alignment, and takes about five seconds for processing a typical gel pair on a standard personal computer.  相似文献   

13.
This paper explores the use of proteomics as a tool for identifying protein species whose expression has been altered by dibenzoylmethane (DBM) in LNCaP cells. Although DBM, a constituent of licorice, has been shown to induce cell cycle arrest and regulate androgen receptor (AR) expression, the mechanism by which these events occur is unknown. To develop a better understanding of the effect of DBM on cancer cells, we analyzed changes in protein expression induced by DBM in LNCaP cells using two-dimensional (2-D) gel electrophoresis. The proteomic approach used to study LNCaP cells has lead to the analysis and identification of a number of protein species that increase or decrease as a result of exposure to DBM. In particular, twenty features were found to be differentially expressed in this study based on the quantitation of two separate 2-D-fluorescence difference gel electrophoresis analyses. Thirteen of these features were identified through mass spectrometric analysis. The intensity of 10 out of the 13 spots identified increased 2- to 3-fold in response to 25 micro M and 50 micro M DBM and the remaining three spots decreased 2-fold in response to the same DBM treatment. This study investigates proteomic changes induced by treatment of cells with DBM in order to develop a model for the mechanism by which DBM induces cell cycle arrest and represses AR expression.  相似文献   

14.
Proteomic analysis of the wing imaginal discs of Drosophila melanogaster   总被引:1,自引:0,他引:1  
Alonso J  Santarén JF 《Proteomics》2005,5(2):474-489
We have combined high-resolution two-dimensional (2-D) gel electrophoresis and mass spectrometry with the aim of identifying proteins represented in the 2-D gel database of the wing imaginal discs of Drosophila melanogaster. First, we obtained a high-resolution 2-D gel pattern of [35S]methionine + [35S]cysteine-labeled polypeptides of Schneider cells, a permanent cell line of Drosophila embryonic origin, and compared it with the standard pattern of polypeptides of the wing imaginal disc. These studies reveal qualitative and quantitative differences between the two samples, but have more than 600 polypeptides in common. Second, we carried out preparative 2-D polyacrylamide gel electrophoresis using Schneider cells mixed with radioactively labeled wing imaginal discs in order to isolate some of the shared polypeptides and characterize them by matrix-assisted laser desorption/ionization-time of flight MALDI-TOF analysis. Using this strategy we identified 100 shared proteins represented in the database, and in each case confirmed their identity by MALDI-TOF/TOF analysis.  相似文献   

15.
Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus Megalocytivirus in the family Iridoviridae, causes severe damage to mandarin fish cultures in China. Little is known about the proteins of ISKNV virions. In this study, a total of 38 ISKNV virion-associated proteins were identified by four different workflows with systematic and comprehensive proteomic approaches. Among the 38 identified proteins, 21 proteins were identified by the gel-based workflows (one-dimensional [1-D] and two-dimensional [2-D] gel electrophoresis). Fifteen proteins were identified by 1-D gel electrophoresis, and 16 proteins were identified by 2-D gel electrophoresis, with 10 proteins identified by both methods. Another 17 proteins were identified only by liquid chromatography (LC)-based workflows (LC-matrix-assisted laser desorption ionization [MALDI] and linear trap quadrupole [LTQ]-Orbitrap). Among these 17 LC-identified proteins, 5 proteins were identified uniquely by the LC-MALDI workflow, whereas another 6 proteins were identified only by the LTQ-Orbitrap workflow. These results underscore the importance of incorporation of multiple approaches in identification of viral proteins. Based on viral genomic sequence, genes encoding these 38 viral proteins were cloned and expressed in vitro. Antibodies were produced against these 38 proteins to confirm the ISKNV structural proteins by Western blotting. Of the newly identified proteins, ORF 056L and ORF 118L were identified and confirmed as two novel viral envelope proteins by Western blotting and immunoelectron microscopy (IEM). The ISKNV proteome reported here is currently the only characterized megalocytivirus proteome. The systematic and comprehensive identification of ISKNV structural proteins and their localizations in this study will facilitate future studies of the ISKNV assembly process and infection mechanism.  相似文献   

16.
Recent advances in two-dimensional electrophoresis (2-DE) such as fluorescent 2-D differential gel electrophoresis (2-D DIGE) has made it possible to detect and quantitate the critical changes involved in disease pathogenesis. We have previously identified novel proteins with altered expression in primary colorectal cancer using agarose 2-DE that has a higher loading capacity than immobilized pH gradient gel. The aim of this study is to identify novel proteins with altered expression in primary esophageal cancer using the powerful method of agarose 2-DE and agarose 2-D DIGE. Excised tissues from 12 patients of primary esophageal cancer were obtained. Proteins with altered expression between cancer and adjacent non-cancer tissues were analyzed by agarose 2-D DIGE and identified by mass spectrometry. Thirty-three proteins out of 74 spots with altered expression in tumors were identified. Among them, a 195-kDa protein, periplakin, was significantly downregulated in esophageal cancer, which was confirmed by immunoblotting. Immunohistochemistry showed that periplakin was mainly localized at cell-cell boundaries in normal epithelium and dysplastic lesions, while it disappeared from cell boundaries, shifted to cytoplasm, in early cancers and scarcely expressed in advanced cancers. These results suggest that periplakin could be a useful marker for detection of early esophageal cancer and evaluation of tumor progression.  相似文献   

17.
In this work, we present a home-made two-dimensional (2-D) CCD imaging system for the monochromatic densitometry of plane gels and its application to the imaging and densitometry of chlorophyll (Chl)-containing proteins separated by non-denaturing polyacrylamide gel electrophoresis. The monochromatic imaging of separated green bands at the wavelengths corresponding to their absorption band increases their contrast. This allows a better visualization of the faint-green bands in the gel and using of samples with lower Chl content for the electrophoresis. By the comparison of 2-D densitograms of the same gel illuminated with 670 and 650 nm lights, that is, at the red absorption maximum of Chl a and b, respectively, we achieved a selective imaging of the complexes with different Chl a/b ratio. This approach was used to specify an unknown band that appeared in the gel of the sample prepared from the thylakoid membranes of preheated barley leaves.  相似文献   

18.
A Wada 《Journal of biochemistry》1986,100(6):1583-1594
Kaltschmidt and Wittmann's two dimensional gel electrophoresis was improved in the following points. Preruns using radical scavengers were carried out to eliminate free radicals remaining in gels. Gelation of sample solutions was not performed to avoid immobilization of proteins in the sample gels. Instead, for preparing sample gels, prior to the first dimension (1-D) electrophoresis, another electrophoresis was performed to charge proteins into gel pieces polymerized previously. Proteins migrated together with charged reductants to avoid formation of artificial disulfide bridges during migration. The second dimension (2-D) electrophoresis was carried out at a more acidic pH, 3.6, to get better separation of very small and basic proteins. With these modifications, quantitative yield and reproducibility became better, and many faint spots disappeared not only at the high molecular weight side but also in the region containing primary spots of ribosomal proteins. The proportionality of the migration distance to the logarithm of molecular weight was also increased. On the improved 2-D electrophoretogram of Escherichia coli ribosomal proteins, four new spots, called protein A, B, C, and D, were found in the basic region. Proteins A, B, and C belong to 50S subunits but D to 30S. Their molecular weights were determined electrophoretically as 6,400, 4,900, 8,200, and 5,900, respectively. Their copy numbers in crude ribosomes were estimated to be 0.6, 0.4, 0.3, and 0.1, respectively, by using 14C-labeling.  相似文献   

19.
We describe a procedure for the simultaneous extraction of proteins and nucleic acids from the same experimental sample allowing for direct correlations between genetic, genomic, and proteomic data. This approach, using commercially available column-based nucleic acid extraction kits, requires no hazardous chemicals and is a quick, reliable, and consistent method for concomitant protein extraction. Buffer choice is critical to completely solubilize all proteins in the sample. Proteins solubilized in radioimmunoprecipitation assay (RIPA) buffer did not represent the entire profile when compared with conventionally extracted proteins using the same buffer at the one-dimensional (1-D) sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) level, however proteins extracted from the columns and solubilized in a two-dimensional (2-D) electrophoresis lysis buffer showed a similar profile to conventionally extracted proteins when analyzed at both the 1-D and the 2-D level. We further showed that proteins extracted using these methods were compatible with Western blot analysis. This technique provides a simple and effective way to analyze protein and nucleic acids simultaneously from the same sample without affecting yield and quality.  相似文献   

20.
To avoid the specific problems concerning intrinsic membrane proteins in proteome analysis, an alternative strategy is described that is complementary to previous investigations using 2-D polyacrylamide gel electrophoresis (PAGE) techniques. The strategy involves (a) obtaining purified preparations of the membranes from Chlorobium tepidum by washing with 2 M NaBr, which removed membrane-associated soluble proteins and membrane-associated organelles; (b) separation of membrane protein complexes using 1-D Blue-native polyacrylamide gel electrophoresis (BN-PAGE) after solubilization with n-dodecyl-beta-d-maltoside (DDM); (c) combination of the BN with Tricine-SDS-PAGE; (d) high-throughput mass spectrometric analysis after gel band excision, in-gel digestion, and MALDI target spotting; and (e) protein identification from mixtures of tryptic peptides by peptide mass fingerprinting. Using this approach, we identified 143 different proteins, 70 of which have not been previously reported using 2-D PAGE techniques. Membrane proteins with up to 14 transmembrane helices were found, and this procedure proved to be efficient with proteins within a wide pI range (4.4-11.6). About 54% of the identified membrane proteins belong to various functional categories like energy metabolism, transport, signal transduction, and protein translocation, while for the others, a function is not yet known, indicating the potential of the method for the elucidation of the membrane proteomes in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号