首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase Cgamma2 (PLCgamma2) is a critical signaling effector of the B-cell receptor (BCR). Here we show that PLCgamma2 deficiency impedes early B-cell development, resulting in an increase of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B cells. PLCgamma2 deficiency impairs pre-BCR-mediated functions, leading to enhanced interleukin-7 (IL-7) signaling and elevated levels of RAGs in the selected large pre-B cells. Consequently, PLCgamma2 deficiency renders large pre-B cells susceptible to transformation, resulting in dramatic acceleration of Myc-induced lymphomagenesis. PLCgamma2(-/-) Emu-Myc transgenic mice mainly develop lymphomas of B220+ CD43+ BP-1+ CD24hi pre-BCR+ large pre-B-cell origin, which are uncommon in wild-type Emu-Myc transgenics. Furthermore, lymphomas from PLCgamma2(-/-) Emu-Myc transgenic mice exhibited a loss of p27Kip1 and often displayed alterations in Arf or p53. Thus, PLCgamma2 plays an important role in pre-BCR-mediated early B-cell development, and its deficiency leads to markedly increased pools of the most at-risk large pre-B cells, which display hyperresponsiveness to IL-7 and express high levels of RAGs, making them prone to secondary mutations and Myc-induced malignancy.  相似文献   

2.
3.
During B-cell receptor (BCR) signaling, phosphoinositide-3 kinase (PI3K) is thought to function upstream of phospholipase Cgamma2 (PLCgamma2). PLCgamma2 deficiency specifically impedes transitional type 2 (T2) to follicular (FO) mature B-cell transition. Here, we demonstrate that PI3K deficiency specifically impaired T2-to-FO mature B-cell transition and marginal zone B-cell development. Furthermore, we investigated the functional relationship between PI3K and PLCgamma2 using PI3K-/-, PLCgamma2-/-, and PI3K-/- PLCgamma2-/- B cells. Interestingly, PLCgamma2 deficiency had no effect on BCR-mediated PI3K activation, whereas PI3K deficiency only partially blocked activation of PLCgamma2. Moreover, whereas PI3K-/- PLCgamma2-/- double deficiency did not affect hematopoiesis, it resulted in embryonic lethality. PI3K-/- PLCgamma2-/- fetal liver cells transplanted into B-cell null JAK3-/- mice failed to restore development of peripheral B cells and failed to progress through early B-cell development at the pro-B- to pre-B-cell transition, a more severe phenotype than was observed with either PI3K or PLCgamma2 single-deficiency B cells. Consistent with this finding, BCR signaling was more severely impaired in the absence of both PI3K and PLCgamma2 genes than in the absence of either one alone. Taken together, these results demonstrate that whereas PI3K functions upstream of PLCgamma2, activation of PLCgamma2 can occur independently of PI3K and that PI3K and PLCgamma2 also have distinct functions in BCR signal transduction.  相似文献   

4.
B cell linker (BLNK) protein and phospholipase Cgamma2 (PLCgamma2) are components of the BCR signalosome that activate calcium signaling in B cells. Mice lacking either molecule have a severe but incomplete block in B lymphopoiesis. In this study, we generated BLNK-/- PLCgamma2-/- mice to examine the effect of simultaneous disruption of both molecules on B cell development. We showed that BLNK-/- PLCgamma2-/- mice had compounded defects in B cell maturation compared with either single mutant, suggesting that these two molecules cooperatively or synergistically signaled B lymphopoiesis. However, Ig H chain allelic exclusion was maintained in single and double mutants, indicating that signals propagated by BLNK and PLCgamma2 were not involved in this process. Interestingly, in the absence of BLNK, B cell development was dependent on plcgamma2 gene dosage. This was evidenced by the proportionate decrease in splenic B cell population and increase in bone marrow surface pre-BCR+ cells in PLCgamma2-diploid, -haploid, and -null animals. Intracellular calcium signaling and ERK activation in response to BCR engagement were also proportionately decreased and delayed, respectively, with stepwise reduction of plcgamma2 dosage in a BLNK(null) background. Thus, these data indicate the importance of BLNK not only as a conduit to specifically channel BCR-signaling pathways and as a scaffold for the assembling of macromolecular complex, but also as an efficient aggregator or concentrator of PLCgamma2 molecules to effect optimal signaling for B cell generation and activation.  相似文献   

5.
In this Opinion article, I address the role of the pre-B-cell receptor (pre-BCR) in the development of antigen-specific B cells in terms of immunoglobulin heavy chain (IgH) variable-region repertoire selection, precursor B-cell differentiation and proliferation, and IgH allelic exclusion. Comparisons with the role of the pre-T-cell receptor (pre-TCR) in T-cell development raise provocative questions. Why do B- and T-cell lineages both use a surrogate chain - the surrogate light chain and the pre-TCR alpha-chain, respectively - as a step to develop their repertoires of antigen-recognizing cells? What are the functions of the pre-BCR and pre-TCR in lymphocyte differentiation and antigen-receptor allelic exclusion? This article, together with the accompanying article by Harald von Boehmer, hopes to answer some of these questions.  相似文献   

6.
Pre-B cell receptor (pre-BCR) signals are essential for pro-B cells to mature efficiently into pre-B cells. The pre-BCR is an Ig-like transmembrane complex that is assembled from two mu H chains (mu HC) and two surrogate L chains consisting of the non-covalently associated polypeptides VpreB and lambda5. In lambda5(-/-) mice, pro-B cell maturation is impaired, but not completely blocked, implying that a mu HC induces differentiation signals in the absence of lambda5. Using a mouse model, in which transgenic mu HC expression can be controlled by tetracycline, we show that in the absence of lambda5, the transgenic mu HC promotes in vivo differentiation of pro-B cells, induces IL-7-dependent cell growth, and is expressed on the surface of pre-B cells. Our findings not only show that an incomplete pre-BCR can initiate signals, but also challenge the paradigm that an IgHC must associate with an IgLC or a SLC to gain transport and signaling competency.  相似文献   

7.
Calponins form an evolutionary highly conserved family of actin filament-associated proteins expressed in both smooth muscle and non-muscle cells. Whereas calponin-1 and calponin-2 have already been studied to some extent, little is known about the role of calponin-3 under physiological conditions due to the lack of an appropriate animal model. Here, we have used an unbiased screen to identify novel proteins implicated in signal transduction downstream of the precursor B cell receptor (pre-BCR) in B cells. We find that calponin-3 is expressed throughout early B cell development, localizes to the plasma membrane and is phosphorylated in a Syk-dependent manner, suggesting a putative role in pre-BCR signaling. To investigate this in vivo, we generated a floxed calponin-3-GFP knock-in mouse model that enables tracking of cells expressing calponin-3 from its endogenous promoter and allows its tissue-specific deletion. Using the knock-in allele as a reporter, we show that calponin-3 expression is initiated in early B cells and increases with their maturation, peaking in the periphery. Surprisingly, conditional deletion of the Cnn3 revealed no gross defects in B cell development despite this regulated expression pattern and the in vitro evidence, raising the question whether other components may compensate for its loss in lymphocytes. Together, our work identifies calponin-3 as a putative novel mediator downstream of the pre-BCR. Beyond B cells, the mouse model we generated will help to increase our understanding of calponin-3 in muscle and non-muscle cells under physiological conditions.  相似文献   

8.
Proliferative expansion of pro-B cells is an IL-7-dependent process that allows for the rearrangement of H chain genes and the expression of the pre-B cell receptor (pre-BCR). Further B cell differentiation is dependent upon signals elicited through the pre-BCR, which are thought to be responsible for allelic exclusion, induced L chain gene rearrangement, and continued proliferation. CD19 promotes the proliferation and survival of mature B cells, but its role in early B cell development is less well understood. Here we identify and characterize impairments in early B cell development in CD19(-/-) mice. Following sublethal irradiation, we found decreased numbers of autoreconstituted early B cells, which was first evident in the large cycling pre-B cell fraction. Reduced cell progression due to a defect in proliferation was made evident from cell cycle analysis and bromodeoxyuridine labeling of bone marrow cells from CD19(-/-) and wild-type mice. Studies of IL-7-dependent pre-B cell cultures derived from wild-type and CD19(-/-) mouse bone marrow suggested that CD19 has little affect on IL-7 signaling. By contrast, signaling through the pre-BCR was impaired in the absence of CD19, as demonstrated by reduced activation of Bruton's tyrosine kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase. Thus, in addition to promoting mature B cell homeostasis and Ag-induced responses, the early onset of CD19 expression acts to enhance B cell generation.  相似文献   

9.
Although studies have shown that the Notch2 family member is critical for embryonic development, little is known concerning its role in hematopoiesis. In this study, we show that the effects of an activated form of Notch2 (N2IC) on the T-cell lineage are dosage related. High-level expression of N2IC results in the development of T-cell leukemias. In contrast, lower-level expression of N2IC does not lead to transformation but skews thymocyte development to the CD8 lineage. Underlying this skew is a dramatic enhancement in positive selection and CD8SP maturation. N2IC permits early B-cell development but blocks the maturation of conventional B2 cells at the pre-B stage, which is the limit of endogenous Notch2 protein expression in developing B cells. Most strikingly, while B2 B cell development is blocked at the pre-B-cell stage, N2IC promotes the selective development of LPS-responsive B1 B cells. This study implicates a role for Notch2 in the maturation of the CD8 lineage and suggests a novel function for Notch2 in the development of the B1 B-cell subset.  相似文献   

10.
B-cell receptor (BCR)-induced activation of phospholipase C-gamma1 (PLCgamma1) and PLCgamma2 is crucial for B-cell function. While several signaling molecules have been implicated in PLCgamma activation, the mechanism coupling PLCgamma to the BCR remains undefined. The role of PLCgamma1 SH2 and SH3 domains at different steps of BCR-induced PLCgamma1 activation was examined by reconstitution in a PLCgamma-negative B-cell line. PLCgamma1 membrane translocation required a functional SH2 N-terminal [SH2(N)] domain, was decreased by mutation of the SH3 domain, but was unaffected by mutation of the SH2(C) domain. Tyrosine phosphorylation did not require the SH2(C) or SH3 domains but depended exclusively on a functional SH2(N) domain, which mediated the association of PLCgamma1 with the adapter protein, BLNK. Forcing PLCgamma1 to the membrane via a myristoylation signal did not bypass the SH2(N) domain requirement for phosphorylation, indicating that the phosphorylation mediated by this domain is not due to membrane anchoring alone. Mutation of the SH2(N) or the SH2(C) domain abrogated BCR-stimulated phosphoinositide hydrolysis and signaling events, while mutation of the SH3 domain partially decreased signaling. PLCgamma1 SH domains, therefore, have interrelated but distinct roles in BCR-induced PLCgamma1 activation.  相似文献   

11.
PLCgamma2 plays a critical role in B cell receptor (BCR) signaling and its targeted deletion results in defective B cell development and function. Here, we show that PLCgamma2 deficiency specifically blocks B cell maturation at the transitional type 2 (T2) to follicular (FO) B cell transition and the PLCgamma2 pathway regulates survival of B cells. BCR-induced apoptosis is dramatically enhanced in all subsets of splenic PLCgamma2-deficient B cells, especially in T2 and FO B cell subpopulations. We also find that all splenic PLCgamma2-deficient B cell subpopulations express abnormally low levels of Bcl-2 protein. In addition, PLCgamma2 deficiency disrupts BCR-mediated induction of A1 expression. Enforced expression of Bcl-2 prevents BCR-induced apoptosis in all splenic PLCgamma2-deficient B cell subpopulations and partially restores the numbers of PLCgamma2-deficient FO B cells. In contrast to Bcl-2, enforced expression of A1 preferentially prevents BCR-induced apoptosis in PLCgamma2-deficient FO B cells and partially restores the numbers of these B cells. Therefore, the PLCgamma2 pathway provides a survival signal via regulation of Bcl-2 in all splenic B cell subpopulations and via additional induction of A1 in mature FO B cells.  相似文献   

12.
Neurotrophic signaling pathways have been implicated in the maintenance of the mesolimbic dopamine system, as well as in changes in this system induced by chronic morphine exposure. We found that many of these signaling pathway proteins are expressed at appreciable levels within the ventral tegmental area (VTA) and related regions, although with substantial regional variation. Moreover, phospholipase Cgamma1 (PLCgamma1) was significantly and specifically up-regulated within the VTA by 30% following chronic exposure to morphine. PLCgamma1 mRNA expression is enriched in dopaminergic neurons within the VTA; however, the up-regulation of PLCgamma1 in this region was not seen at the mRNA level. In contrast to PLCgamma1, insulin receptor substrate (IRS)-2, a protein involved in phosphatidylinositol 3-kinase signaling, and another putative IRS-like protein were significantly down-regulated within the VTA by 49 and 45%, respectively. Levels of several proteins within the Ras-ERK pathway were not altered. Regulation of neurotrophic factor signaling proteins may play a role in morphine-induced plasticity within the mesolimbic dopamine system.  相似文献   

13.
The production of a mature B cell requires passage through a number of developmental checkpoints. The pre-BCR plays a critical role in passage through the pro-B cell/pre-B cell checkpoint, and thus plays a central role in regulating the differentiation of a B cell. Due to the significance of this receptor, it is imperative that pre-BCR expression and function are precisely regulated. In this study, we have investigated a system in which the regulation of the pre-BCR is altered. We have found that continued expression of components of the pre-BCR (lambda5) resulted in a delay in the kinetics of B cell maturation. Pro-B cells from normal mouse bone marrow retrovirally infected with lambda5 exhibited a delay in differentiation. As compared with wild-type cells at the same time point, there is a reduction in the presence of cell surface markers that indicate developmental progression, and there is a 6- to 16-fold decrease in the production of Ig-positive cells in B cell maturation assays. The capacity to alter B cell progression by modifying and extending pre-BCR expression argues that the receptor and its associated signals play a unique role in directing developmental outcomes.  相似文献   

14.
Efficient clonal expansion of early precursor B (pre-B) cells requires signals delivered by an Ig-like integral membrane complex, the so-called pre-B cell receptor (pre-BCR). A pre-BCR consists of two membrane micro H chains, two covalently associated surrogate L chains, and the heterodimeric signaling transducer Igalphabeta. In contrast to a conventional Ig L chain, the surrogate L chain is a heterodimer composed of the invariant polypeptides VpreB and lambda5. Although it is still unclear how pre-BCR signals are initiated, two recent findings support a ligand-dependent initiation of pre-BCR signals: 1) a pre-BCR/galectin-1 interaction is required to induce phosphorylation of Igalphabeta in a human precursor B line, and 2) soluble murine as well as human pre-BCR molecules bind to stroma and other adherent cells. In this study, we show that efficient binding of a soluble murine pre-BCR to stroma cells requires the non-Ig-like unique tail of lambda5. Surprisingly however, a murine pre-BCR, in contrast to its human counterpart, does not interact with galectin-1, as revealed by lactose blocking, RNA interference, and immunoprecipitation assays. Finally, the binding of a murine pre-BCR to stroma cells can be blocked either with heparin or by pretreatment of stroma cells with heparitinase or a sulfation inhibitor. Hence, efficient binding of a murine pre-BCR to stroma cells requires the unique tail of lambda5 and stroma cell-associated heparan sulfate. These findings not only identified heparan sulfate as potential pre-BCR ligands, but will also facilitate the development of appropriate animal models to determine whether a pre-BCR/heparan sulfate interaction is involved in early B cell maturation.  相似文献   

15.
PAX5 is a tumor suppressor in B-ALL, while the role of PAX5 fusion proteins in B-ALL development is largely unknown. Here, we studied the function of PAX5-ETV6 and PAX5-FOXP1 in mice expressing these proteins from the Pax5 locus. Both proteins arrested B-lymphopoiesis at the pro-B to pre-B-cell transition and, contrary to their proposed dominant-negative role, did not interfere with the expression of most regulated Pax5 target genes. Pax5-Etv6, but not Pax5-Foxp1, cooperated with loss of the Cdkna2a/b tumor suppressors in promoting B-ALL development. Regulated Pax5-Etv6 target genes identified in these B-ALLs encode proteins implicated in pre-B-cell receptor (BCR) signaling and migration/adhesion, which could contribute to the proliferation, survival, and tissue infiltration of leukemic B cells. Together with similar observations made in human PAX5-ETV6+ B-ALLs, these data identified PAX5-ETV6 as a potent oncoprotein that drives B-cell leukemia development.  相似文献   

16.
17.
Surrobodies2 are a unique type of binding protein based on the pre-B-cell receptor (pre-BCR). The pre-BCR is transiently expressed during development of the antibody repertoire. Unlike heterotetrameric canonical antibodies that are composed of identical pairs of heavy and light chains, the pre-BCR is a heterohexameric complex composed of identical pairs of heavy chains that are each paired with a two-subunit surrogate light chain (SLC). The SLC contains nonimmunoglobulin-like peptide extensions on each of the two SLC components. This arrangement provides unique opportunities for protein engineering by functional derivatization of these nonimmunoglobulin-like tails. Here we report recombinant fusions to these tails with either a fully active cytokine or with single-chain variable fragment (scFv) domains to generate Surrobodies with unique functions or Surrobodies that are bispecific with respect to targeted binding.  相似文献   

18.
Positive selection of precursor (pre-) B cells by Ig membrane mu H chains (mum HC) and counterselection mediated by the truncated HC Dmu depend on the ability of each HC to form a pre-B cell receptor (pre-BCR) signaling complex with the surrogate L chain (SLC) components lambda5 and Vpre-B. To better understand how pre-BCR signaling output is determined by its Ig components and the SLC, we investigated the regulation of pre-BCR surface expression and HC secretory maturation in a new nonlymphoid system. We took this approach as a means to distinguish B-lineage-specific effects from pre-BCR-intrinsic properties that may influence these aspects of pre-BCR homeostasis necessary for signaling. As in pre-B cells, the SLC in nonlymphoid cells supported only a limited degree of mum HC maturation and low pre-BCR surface expression levels compared with conventional LCs, indicating that this was due to an intrinsic property of the SLC. We identified the non-Ig region of lambda5 as harboring the restrictive activity responsible for this phenotype. This property of lambda5 was also evident with Dmu, but the overall SLC- and L chain-dependent requirements for Dmu maturation and surface expression were markedly different from those for mum. Surprisingly, Dmu was modified in an unusual manner that was only dependent on Vpre-B. These results establish a novel function of lambda5 in limiting surface pre-BCR levels and reveal biochemical properties of Ig molecules that may underlie the diverse consequences of pre-BCR signaling in vivo by different HCs.  相似文献   

19.
The pro-B to pre-B transition during B cell development is dependent upon surface expression of a signaling competent pre-B cell Ag receptor (pre-BCR). Although the mature form of the BCR requires ligand-induced aggregation to trigger responses, the requirement for ligand-induced pre-BCR aggregation in promoting B cell development remains a matter of significant debate. In this study, we used transmission electron microscopy on murine primary pro-B cells and pre-B cells to analyze the aggregation state of the pre-BCR. Although aggregation can be induced and visualized following cross-linking by Abs to the pre-BCR complex, our analyses indicate that the pre-BCR is expressed on the surface of resting cells primarily in a nonaggregated state. To evaluate the degree to which basal signals mediated through nonaggregated pre-BCR complexes can promote pre-BCR-dependent processes, we used a surrogate pre-BCR consisting of the cytoplasmic regions of Igalpha/Igbeta that is targeted to the inner leaflet of the plasma membrane of primary pro-B cells. We observed enhanced proliferation in the presence of low IL-7, suppression of V(H)(D)J(H) recombination, and induced kappa light (L) chain recombination and cytoplasmic kappa L chain protein expression. Interestingly, Igalpha/Igbeta-mediated allelic exclusion was restricted to the B cell lineage as we observed normal TCRalphabeta expression on CD8-expressing splenocytes. This study directly demonstrates that basal signaling initiated through Igalpha/Igbeta-containing complexes facilitates the coordinated control of differentiation events that are associated with the pre-BCR-dependent transition through the pro-B to pre-B checkpoint. Furthermore, these results argue that pre-BCR aggregation is not a requirement for pre-BCR function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号