首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We tested the reroductive compatibility existing between four geographically different populations of Proaselis coxalis (Crustacea Isopoda) collected in the river Sarno (near Naples) and on three Sicilian sites: San Domenico; Villa Grazia di Carini and Enna. By means of laboratory hybridization experiments (“no-choice” method) we investigated and characterized the reproductive isolation established between these populations under allopatric conditions. The populations San Domenico and Enna are reproductively isolated from Villa Grazia di Carini and Sarno, so that they may be considered as belonging to different species. The mechanism of reproductive isolation are of postzygotic nature only: embronic death, hbrid inviability and sterility of the surviving hybrids. These results agree with tie theory of aioatric speciation, according to which in the first phase of speciation only post-zygotic mechanisms occur as an accidental product of genetic divergence.  相似文献   

2.
Postzygotic isolation evolves due to an accumulation of substitutions (potentially deleterious alleles in hybrids) in populations that have become geographically isolated. These potentially deleterious alleles might also be maintained in ancestral populations before geographic isolation. We used an individual-based model to examine the effect of the genetic state of an ancestral population on the evolution of postzygotic isolation after geographic isolation of a population. The results showed that the number of loci at which degenerative alleles are fixed in an ancestral population at equilibrium significantly affects the evolutionary rates of postzygotic isolation between descendant allopatric populations. Our results suggest that: (1) a severe decrease in population size (e.g., less than ten individuals) is not necessary for the rapid evolution of postzygotic isolation (e.g., <10,000 generation); (2) rapid speciation can occur when there is a large difference in the equilibrium number of accumulated degenerative alleles between ancestral and descendant populations; and (3) in an ancestral population maintained at a small effective population size for a long period of time, postzygotic isolation rarely evolves if back mutations that restore the function of degenerative alleles are limited.  相似文献   

3.
The process of speciation involves the accumulation of reproductive isolation (RI) between diverging lineages. Selection can favor increased RI via the process of reinforcement, whereby costs to hybridization impose selection for increased prezygotic RI. Reinforcement results in phenotypic divergence within at least one taxon, as a result of costly hybridization between sympatric taxa. The strength of selection driving reinforcement is determined by the cost of hybridization and the frequency of hybridization. We investigated the cost of hybridization by quantifying postmating RI barriers among Phlox species that comprise one of the best‐studied cases of reinforcement. We determined if the strength of RI differs among lineages that have and have not undergone reinforcement, how much variability there is within species in RI, and whether RI is associated with phylogenetic relatedness. We found high RI for the species that underwent phenotypic divergence due to reinforcement; however, RI was also high between other species pairs. We found extensive variability in RI among individuals within species, and no evidence that the strength of RI was associated with phylogenetic relatedness. We suggest that phenotypic divergence due to reinforcement is associated with the frequency of hybridization and introgression, and not the cost of hybridization in this clade.  相似文献   

4.
 The main subject for models of postzygotic isolation has been how reproductive isolation genes (RI genes) which cause hybrid inviability or sterility spread within populations despite their deleterious effects. The models are divided into three categories according to the within-population effect of RI genes in their fixation process. (1) The beneficial effect model, where RI genes are assumed to spread within populations by a positive selective force via natural or sexual selection. (2) The neutral effect model, where RI genes are assumed not to affect the fitness of individuals in their fixation process and to be spread by genetic drift. (3) The deleterious effect model, where RI genes are assumed to exhibit some (slightly) deleterious effects in their fixation process and to be spread by genetic drift. Factors that affect the applicability of these models are discussed. If a selective force such as sexual conflict or natural selection facilitates the evolution of RI genes, the beneficial effect model should be applied. Many empirical studies have suggested that positive selection plays an important role in the evolution of hybrid male sterility. If the mutation rates of RI genes are low, and the specificity of epistatic interaction causing hybrid inviability or sterility is high, the neutral effect model should be applied. However, if the opposite condition applies, the deleterious effect model should be applied. Received: February 7, 2002 / Accepted: October 17, 2002 Acknowledgments We are grateful to two anonymous reviewers and the editor for helpful comments and suggestions. Correspondence to:T.I. Hayashi  相似文献   

5.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

6.
Sexual selection via female mate choice is thought to have played a key role in the speciation of haplochromine cichlids, but a dominant role for visual signals in such processes has lately been called into question. In addition, the possible role of male mating preferences in haplochromine speciation has been little studied. We studied patterns of both female and male mate choice, based exclusively on visual signals, in order to evaluate potential reproductive isolation between two populations of the Lake Malawi haplochromine Labeotropheus fuelleborni. In the first experiment, females were allowed to choose between two males, one from the same population and the other allopatric with respect to the female. Females in this experiment responded more frequently to males from their own population. Similarly, the males in these trials displayed more frequently when presented with females of their own population. In the second experiment, a female was allowed to choose between two males, either both from her own population or both allopatric. In these trials, both males and females from the Katale population interacted significantly more frequently in settings in which all three individuals were from the same population ("same-population trios"), and those from the Chipoka population showed a similar trend. Thus, patterns in both male and female courtship behavior suggest that visual signals contribute to at least incipient reproductive isolation between populations of L. fuelleborni [Current Zoology 56 (1): 65-72 2010].  相似文献   

7.
The possible association between gonadal protein divergence and postzygotic reproductive isolation was investigated among species of the Drosophila melanogaster and D. virilis groups. Protein divergence was scored by high-resolution two-dimensional electrophoresis (2DE). Close to 500 protein spots from gonadal tissues (testis and ovary) and nongonadal tissues (malpighian tubules and brain) were analyzed and protein divergence was calculated based on presence vs absence. Both testis and ovary proteins showed higher divergence than nongonadal proteins, and also a highly significant positive correlation with postzygotic reproductive isolation but a weaker correlation with prezygotic reproductive isolation. Particularly, a positive and significant correlation was found between proteins expressed in the testis and postzygotic reproductive isolation among closely related species such as the within-phylad species in the D. virilis group. The high levels of male-reproductive-tract protein divergence between species might be associated with F1 hybrid male sterility among closely related species. If so, a lower level of ovary protein divergence should be expected on the basis that F1 female hybrids are fully fertile. However, this is not necessarily true if relatively few genes are responsible for the reproductive isolation observed between closely related species, as recent studies seem to suggest. We suggest that the faster rate of evolution of gonadal proteins in comparison to nongonadal proteins and the association of that rate with postzygotic reproductive isolation may be the result of episodic and/or sexual selection on male and female molecular traits. Correspondence to: A. Civetta  相似文献   

8.
Ecological speciation occurs when reproductive isolation evolves ultimately as a result of divergent natural selection between populations inhabiting different environments or exploiting alternative resources. I tested a prediction of the ecological model concerning the fitness of hybrids between two young, sympatric species of threespine sticklebacks (Benthics and Limnetics). The two species are ecologically and morphologically divergent: the Benthic is adapted to feeding on invertebrates in the littoral zone of the lake whereas the Limnetic is adapted to feeding on zooplankton in the open water. The growth rate of two types of hybrids, the Benthic backcross and the Limnetic backcross, as well as both parent species, was evaluated in enclosures in both parental habitats in the lake. The use of backcrosses is ideal because a comparison of their growth rates in the two habitats estimates an ecologically dependent component of their fitness while controlling for any intrinsic genetic incompatibilities that may exist between the Benthic and Limnetic genomes. The backcross results revealed a striking pattern of ecological dependence: in the littoral zone, Benthic backcrosses grew at approximately twice the rate of Limnetic backcrosses, while in the open water, Limnetic backcrosses grew at approximately twice the rate of Benthic backcrosses. Such a reversal of relative fitness of the two cross-types in the two environments provides strong evidence that divergent natural selection has played a central role in the evolution of postmating isolation between Benthics and Limnetics. Although the rank order of growth rates of all cross-types in the littoral zone was Benthic > Benthic backcross > Limnetic backcross > Limnetic, neither backcross differed significantly from the parent from which it was mainly derived. Implications of this result are discussed in terms of ecological speciation and possible introgressive hybridization between the species. Results in the open water were less clear and were not fully consistent with the ecological model of speciation, mainly as a result of the low growth rate of Limnetics. However, analysis of the diet of the fish in the open water suggests that these enclosures may not have been fully successful at replicating the food regimes characteristic of this habitat.  相似文献   

9.
This study examines early embryogenesis in two species of darters, Etheostoma caeruleum and E. zonale (Teleostei: Percidae), and their hybrids. Results document the course of ontogeny from fertilization until the onset of pigmented eyes. Comparing fertilization and developmental success of conspecific versus heterospecific crosses revealed an asymmetric postmating reproductive barrier. E. caeruleum eggs treated with E. zonale sperm exhibited fertilization and developmental success similar to that of conspecific crosses. In contrast, E. zonale eggs treated with E. caeruleum sperm exhibited reduced fertilization relative to conspecific crosses and abnormal development. Development in this latter cross was compromised at all stages, but appeared to be concentrated around epiboly, or cell migration. As epiboly represents the stage of ontogeny when zygotic genes of both species jointly contribute to embryogenesis, results provide insight into the genetic mechanisms underlying postmating barriers in Etheostoma. Finally, the observed asymmetry in fertilization success is consistent with predictions based on the behavioral ecology of these species. Etheostoma zonale spawn in the open water column, whereas E.␣caeruleum bury their eggs under the substrate. The observed fertilization barrier may have therefore resulted from selection favoring increased fertilization specificity in E. zonale.  相似文献   

10.
 Although there are several well-established hypotheses for the origins of postmating isolation during allopatric divergence, there have been very few attempts to determine their relative importance in nature. We have developed an approach based on knowledge of the differing evolutionary histories of populations within species that allows systematic comparison of the predictions of these hypotheses. In previous work, we have applied this methodology to mating signal variation and premating reproductive isolation between populations of the meadow grasshopper Chorthippus parallelus. Here we review the principles behind our approach and report a study measuring postmating isolation in the same set of populations. The populations have known and differing evolutionary histories and relationships resulting from the colonization of northern Europe following the last glaciation. We use a maximum-likelihood analysis to compare the observed pattern of postmating isolation with the predictions of the hypotheses that isolation primarily evolves either as a result of gradual accumulation of mutations in allopatry, or through processes associated with colonization, such as founder events. We also quantify the extent to which degree of postmating isolation can be predicted by genetic distance. Our results suggest that although there is only a weak correlation between genetic distance and postmating isolation, long periods of allopatry do lead to postmating isolation. In contrast to the pattern of premating isolation described in our previous study, colonization does not seem to be associated with increased postmating isolation. Received: January 24, 2002 / Accepted: July 26, 2002 Acknowledgments Numerous people helped with collecting and rearing grasshoppers. We are grateful to NERC for funding. Correspondence to:R.K. Butlin  相似文献   

11.
In this paper, both the empirical and theoretical genetic aspects of human-mediated introgressive hybridization are reviewed in terms of their association with the breakdown of postzygotic isolating mechanisms. I also compare several simulation models with an ecological or genetic focus that are relevant to the prediction and risk assessment of genetic extinction due to hybridization. One barrier to devising comprehensive risk assessment frameworks is a lack of sufficient population genetic studies that associate introgressive hybridization with specific isolating mechanisms. A gametic model based on multilocus underdominant fitness is one of the best genetic models for introgressive hybridization because it explicitly incorporates the postzygotic isolating mechanism known as Dobzhansky–Muller genetic incompatibility.  相似文献   

12.
通过对日本稻蝗、中华稻蝗台湾亚种和小翅稻蝗的种间交配、交配后精子传送等的研究,探讨了其生殖隔离机制及其进化意义。结果表明: 有共同分布区域的日本稻蝗与中华稻蝗台湾亚种及日本稻蝗与小翅稻蝗的交配率显著低于种内交配,即使交配也无精子的传送,存在强烈的行为隔离和完全的机械隔离。分布不重叠的中华稻蝗台湾亚种与小翅稻蝗之间,小翅稻蝗的雌虫与中华稻蝗台湾亚种雄虫的交配率显著低于种内交配,反向交配时则和种内交配率无显著差异;正反交配都能完成精子传送,显示出不对称、不完全的行为隔离,而无机械隔离的存在。分布不重叠的中华稻蝗台湾亚种与小翅稻蝗生殖隔离的进化速度慢于分布重叠的日本稻蝗与中华稻蝗台湾亚种及日本稻蝗与小翅稻蝗。  相似文献   

13.
《Fungal Biology Reviews》2018,32(2):104-116
Recent scientific and technological advances have improved and streamlined our ability to recognise and describe fungal species. Detailed comparative genomics studies have also expanded our understanding of species boundaries. Against this background, we explore the nature of fungal species and consider how this impacts our understanding of their genetics and evolution. The current body of evidence suggests that fungal species are unique evolutionary units that are separated from one another by boundaries that are “porous” under certain conditions (“semipermeable” in analogy to the differential permeability of membranes). Overall, the penetrability of these boundaries depends on the relatedness between donor and recipient species, the spatial proximity of related species to one another during their evolution, and the evolutionary potential associated with the breach of a boundary. Furthermore, the semipermeable nature of species boundaries fundamentally affects the population genetics of a species, with potentially profound effects on its overall evolution and biology. This also influences the methodologies used in taxonomy, because some species appear capable of maintaining their genetic isolation despite extensive penetrability of their boundaries. Most analytical procedures are also not able to distinguish the signals of species boundary permeability from those associated with incomplete lineage sorting or intraspecific diversity. Collectively, these issues greatly complicate how we study and name fungi. An awareness of the nature of species, their boundaries and the biological and genomic signatures of boundary breaches, will enhance our ability to identify them and, perhaps more importantly, to develop realistic strategies to manage and manipulate their growth and distribution.  相似文献   

14.
尼罗罗非鱼和萨罗罗非鱼遗传生殖隔离的初步证据(英文)   总被引:3,自引:0,他引:3  
Li SF  Zhao Y  Fan WJ  Cai WQ  Xu YF 《动物学研究》2011,32(5):521-527
罗非鱼类(Tilapiini)含3个属70余种,种间和属间颇易人工杂交,但尼罗罗非鱼(Oreochromis niloticus)和萨罗罗非鱼(Sarotherodon melanotheron)人工杂交难度大,产苗概率甚低,要获得数量足够的可用于生产的杂交子代相当困难。该文对这两种鱼及其正交(O.niloticus♀×S.melanotheron♂)和反交(S.melanotheron♀×O.niloticus♂)子代的头肾细胞的核型进行了比较。此外,采用同工酶电泳方法检测肾、肝、眼、肌肉、心中乳酸脱氢酶等4种同工酶的表型差异。4种遗传型罗非鱼具有相同的染色体二倍数(2n=44)和总臂数(NF=50),但各具不同的染色体类型,尼罗罗非鱼为3对近中着丝点染色体(sm)、12对近端着丝点染色体(st)和7对端着丝点染色体(t);萨罗罗非鱼为1对中间着丝点染色体(m)、2对sm、12对st和7对t;正反杂交子代表现为介于双亲之间的混合类型,为0.5对m、2.5对sm、12对st和7对t。在同工酶中,仅见肾脏乳酸脱氢酶电泳结果有清晰差异,尼罗罗非鱼出现5条谱带,萨罗罗非鱼3条,而杂交子代6条,且所有谱带的迁移率和活性均表现出多态性。据此初步认为,核型和同工酶方面的差异可能是导致这两种不同属罗非鱼生殖隔离的遗传原因,这些差异也可能为这两种(属)鱼的分类学提供新的遗传背景资料。  相似文献   

15.
Empirical population genetic studies have been dominated by a neutralist view, according to which gene flow and drift are the main forces driving population genetic structure in nature. The neutralist view in essence describes a process of isolation by dispersal limitation (IBDL) that generally leads to a pattern of isolation by distance (IBD). Recently, however, conceptual frameworks have been put forward that view local genetic adaptation as an important driver of population genetic structure. Isolation by adaptation (IBA) and monopolization (M) posit that gene flow among natural populations is reduced as a consequence of local genetic adaptation. IBA stresses that effective gene flow is reduced among habitats that show dissimilar ecological characteristics, leading to a pattern of isolation by environment. In monopolization, local genetic adaptation of initial colonizing genotypes results in a reduction in gene flow that fosters the persistence of founder effects. Here, we relate these different processes driving landscape genetic structure to patterns of IBD and isolation by environment (IBE). We propose a method to detect whether IBDL, IBA and M shape genetic differentiation in natural landscapes by studying patterns of variation at neutral and non‐neutral markers as well as at ecologically relevant traits. Finally, we reinterpret a representative number of studies from the recent literature by associating patterns to processes and identify patterns associated with local genetic adaptation to be as common as IBDL in structuring regional genetic variation of populations in the wild. Our results point to the importance of quantifying environmental gradients and incorporating ecology in the analysis of population genetics.  相似文献   

16.
To understand how new species form and what causes their collapse, we examined how reproductive isolation evolves during the speciation process, considering species pairs with little to extensive divergence, including a recently collapsed pair. We estimated many reproductive barriers in each of five sets of stickleback fish species pairs using our own data and decades of previous work. We found that the types of barriers important early in the speciation process differ from those important late. Two premating barriers—habitat and sexual isolation—evolve early in divergence and remain two of the strongest barriers throughout speciation. Premating isolation evolves before postmating isolation, and extrinsic isolation is far stronger than intrinsic. Completing speciation, however, may require postmating intrinsic incompatibilities. Reverse speciation in one species pair was characterized by significant loss of sexual isolation. We present estimates of barrier strengths before and after collapse of a species pair; such detail regarding the loss of isolation has never before been documented. Additionally, despite significant asymmetries in individual barriers, which can limit speciation, total isolation was essentially symmetric between species. Our study provides important insight into the order of barrier evolution and the relative importance of isolating barriers during speciation and tests fundamental predictions of ecological speciation.  相似文献   

17.
Behavioural differences are thought to be the first components to contribute to species isolation, yet the precise genetic basis of behavioural isolation remains poorly understood. Here, we used a combination of behaviour assays and genetic mapping to provide the first refined map locating candidate genes for interspecific female preference isolating Drosophila simulans from D. melanogaster. First, we tested whether two genes identified as affecting D. melanogaster female intraspecific mate choice also affect interspecific mate choice; neither of these genes was found to contribute to species‐specific female preference. Next, we used deficiency mapping to locate genes on the right arm of the third chromosome for species‐specific female preference and identified five small significant regions that contain candidate genes contributing to behavioural isolation. All five regions were located in areas that would have low interspecific recombination, which mirrors the results of other behavioural isolation studies that used quantitative trait locus (QTL) mapping, but without the potential concern of bias towards regions of low recombination that QTL mapping may have. As this model system may be refined to the individual gene level using the same methodology, this initial map we provide may potentially serve as a ready template for the identification and characterization of the first behavioural isolation genes.  相似文献   

18.
石荠苎属的遗传分化与种间关系分析   总被引:9,自引:0,他引:9  
杂交实验结果表明,石荠苎属(唇形科)中国产的7个种,即小花荠苎Mosla cavaleriei、石香薷M. chinensis、小鱼仙草M.dianthera、杭州石荠苎M.hangchouensis、疏花荠苎M.pauciflora、石荠苎M. scabra和苏州石荠苎M.soochouensis,彼此之间生殖隔离。这7个种中,疏花荠苎是四倍体,由杂交伴随多倍化产生。根据21个代表居群在15个酶系统的28个位点的等位酶资料分析,其余6个二倍体种组成3个亲缘关系密切的种对。杭州石荠苎和石香薷的亲缘关系最近,石香薷可能由于涉及繁育系统类型的大突变而与杭州石荠苎分化开来。小花荠苎与小鱼仙草比较接近,但它们的遗传分化很显著,除了突变之外,染色体结构也有大的变异,最明显的表现是随体的位置不同,小花荠苎的随体位于长臂上,而小鱼仙草与其它种一样,随体位于短臂上。石荠苎和苏州石荠苎在酶基因位点上的分化不大,但生境隔离、花期隔离和繁育系统的差别等能有效地保持种的独立性。不同的生境要求、不同的花期、花的形态结构的分化、繁育系统类型的不同、杂种Fl代高度不育、染色体数目和核型的差异等均为石荠苎属下种间有效的隔离机制,而且近缘种间常是多种机制共同起作用。  相似文献   

19.
作物远缘杂交育种的途径及其实质   总被引:5,自引:0,他引:5  
作物远缘杂交的育种可操作性及效果多年来颇有争议,科学家对物种起源与进化的研究恰恰是指导作物远缘杂交育种的理论基础。物种形成理论研究表明生命的共同起源是远缘杂交的理论基础,生物多样性是远缘杂交的物质基础。生物种间的繁殖隔离机制是远缘杂交不亲和性障碍的根源所在,而物种形成方式又为克服远缘杂交的不亲和性提供了理论依据。其中异域性物种形成方式下的生殖隔离具有不彻底性,是克服远缘杂交受精前不亲和性的理论根据;同域性物种形成方式中多倍体化的方式对远缘杂交受精后不亲和性的克服具有较强的指导意义。本文在通过对以上方面的阐述,剖析了远缘杂交的障碍来源、克服途径及实质,为作物远缘杂交育种工作提供参考。  相似文献   

20.
Seven species were recognized in Mosla in China. M. pauciflora (C. Y. Wu) C. Y. Wu et H. W. Li is an allotetraploid (2n=36 ), while the other six species are diploids (2n=18). Cluster analysis based on allozyme data from 28 loci of 15 enzyme systems reveals that the six diploid species formed three species pairs. M. cavaleriei Lévl.is closely related to M. dianthera (Buch.-Ham. ex Roxb. ) Maxim., M. chinensis and M. hangchouensis Matsuda are sibling species, and M. scabra (Thunb.) C. Y. Wu et H. W. Li is allied to M. soochouensis. Although M. cavaleriei and M. dianthera are close relatives, considerable genetic divergence has been detected between them. One third of alleles are unique to either of them, and 28.6 % of their loci have different alleles fixed. The average genetic identity ( 1 ) between populations of these two species is 0.770, and the average genetic distance (D) is 0.261. M. scabra and M. soochouensis are the least divergent species pair (I =0.979, D=0.025). No completely divergent locus was detected, and the percentages of unique alleles are 11.1% to M. scabra and 16.7 % to M. soochouensis. This finding indicates that a high level of genetic differentiation is unnecessarily a prerequisite of speciation. A moderate divergence is detected between M. chinensis and M. hangchouensis (I=0.899, D=0.107, and 7.1% of completely diverged loci) yet the latter harbors four times as many unique alleles (45.1% ) as the former does(11.8 % ). Compared to the genetic divergence between M. scabra and M. soochouensis, M. dianthera and M. hangchouensis and may well been undergoing active speciation have the high genetic distance betweenpopulations (0.034 and 0.026 respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号